Правило проверки гипотезы о законе распределения случайной величины
Ранее отмечалось (и этот факт очевиден), что статистика принимает только не отрицательные значения (всегда c2 ³0), причем в нуль она обращается в одном – единственном случае – при совпадении всех соответствующих эмпирических и теоретических частот (т.е. при для каждого i).
Если выдвинутая гипотеза о законе распределения изучаемой случайной величины соответствует действительности, то эмпирические и теоретические частоты должны быть примерно одинаковы, а значит, значения статистики будут группироваться около нуля. Если же выдвинутая гипотеза ложна, то эмпирические и соответствующие теоретические частоты будут существенно разниться, что приведет к достаточно большим отклонениям от нуля значений .
Поэтому хотелось бы найти тот рубеж – называемый критическим значением (или критической точкой) и обозначаемый через , который разбил бы всю область возможных значений статистики на два непересекающихся подмножества: область принятия гипотезы, характеризующаяся неравенством , и критическую область (или область отвержения гипотезы), определяемую неравенством .
Область принятия Критическая область
Гипотезы
0
Как же найти критическое значение ?
Если выдвинутая гипотеза о законе распределения изучаемой случайной величины верна, то вероятность попадания значений статистики в критическую область должна быть мала, так что событие { } должно быть практически неосуществимым в единичном испытании. Эта вероятность, обозначим ее через :
называется уровнем значимости.
Чтобы определить критическое значение , поступим следующим образом. Зададим какое – либо малое значение уровня значимости (как правило = 0,05 или = 0,01) и найдем как уровень уравнения
с неизвестной x. Поскольку распределение статистики близко при к - распределению с r степенями свободы, то
и приближенное значение можно найти из уравнения
Геометрические соображения показывают, что последнее уравнение имеет единственное решение: его корень – это такое число x > 0, при котором площадь под графиком функции (плотности - распределения) над участком равна. На практике решение последнего уравнения находят с помощью специальных таблиц, имеющихся в любом руководстве по математической статистике; эти таблицы позволяют по двум входным параметрам – уровню значимости и числу степеней свободы r определить критическое значение . (Находимое таким образом критическое значение зависит, конечно, от и r,что при необходимости отражают и в обозначениях: ).
Зададим уровень значимости как = 0,05 (условие курсовой работы) .
Подводя итоги, сформулируем правило проверки гипотезы о законе распределения случайной величины с помощью - критерия Пирсона:
1) Проводят n независимых наблюдений случайной величины (принято считать, что должно быть n ³ 100).
2) Разбивают всю числовую ось на несколько (как правило, на 8…12) промежутков
так, чтобы количество измерений в каждом из них (называемое эмпирической
частотой ) оказалось не менее пяти (т.е. ³ 5 при каждом i).
3) Выдвигают (например, судя по профилю гистограммы) гипотезу о законе распределения изучаемой случайной величины и находят параметры этого закона (чаще всего, заменяя математическое ожидание и дисперсию их оценками).
4) С помощью предполагаемого (теоретического) распределения находят теоретические вероятности pi и теоретические частоты = n × pi попадания значений случайной величины в i-й промежуток.
5) По эмпирическим и теоретическим частотам вычисляют значения статистики , обозначаемое через c2набл..
6) Определяют число r степеней свободы.
7) Используя заданное значение уровня значимости и найденное число степеней свободы r, по таблице находят (на пересечении строки, отвечающей r, и столбца, отвечающего ) критическое значение .
8) Формулируя вывод, опираясь на основной принцип проверки статистических гипотез:
если наблюдаемое значение критерия принадлежит критической области, т.е. если , то гипотезу отвергают как плохо согласующуюся с результатами эксперимента;
если наблюдаемое значение критерия принадлежит области принятия гипотезы, т.е. , то гипотезу принимают как не противоречащую результатам эксперимента.
5.6 Вывод о соответствии выдвинутой гипотезы и опытных данных в варианте.
Правило проверки выдвинутой гипотезы о законе распределения изучаемой случайной величины для данного варианта реализовано в таблице:
Название величины | Обозначение и числовое значение величины |
Уровень значимости (задан в условии) | = 0,05 |
Количество промежутков разбиения | l =10 |
Число степеней свободы | r=7 |
Критическое значение (находится по таблице) | = 14,07 |
Наблюдаемое значение критерия | c2набл. = 72,802 |
ВЫВОД | Гипотеза отвергается для данного 4 варианта, поскольку : 72,802 >> 14,07 |
Замечания:
1. Заданное значение уровня значимости = 0,05 означает, что
,
т.е. вероятность события { } очень мала. Однако это событие, обладая ненулевой вероятностью, и тогда (при = 0,05 примерно в 5% случаев) будет отвергнута правильная гипотеза. Отвержение гипотезы, когда она верна, называется ошибкой первого рода. Таким образом, уровень значимости - это вероятность ошибки первого рода. Отметим, что ошибкой второго рода называется принятие гипотезы в случае, когда она неверна.
2. Иногда вместо уровня значимости задается надежность :
т.е. - это вероятность попадания значений статистики в область принятия гипотезы. Поскольку события
{ } и
противоположны, то