Основные функции распределения
Функцией распределения F(x) случайной величины X называют F(x) = Р(P£ х). Ясно, что функция F(x) монотонно возрастает с ростом х (точнее сказать, не убывает, потому что могут существовать участки, на которых она постоянна). У дискретной случайной величины функция распределения ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны. Это точки разрыва F(x).
Биномиальное распределение — это одно из самых распространенных дискретных распределений, оно служит вероятностной моделью для многих явлений. Оно возникает в тех случаях, когда нас интересует, сколько раз происходит некоторое событие в серии из определенного числа независимых наблюдений (опытов), выполняемых в одинаковых условиях.
Биноминальным называется закон распределения дискретной случайной величины X – число появлений события А в n одинаковых независимых испытаниях, в каждом из которых вероятность события A равна p, если вероятность P(X = k) появления события A равно k раз вычисляется по Формуле Бернулли:
Говорят, что дискретная случайная величина X – число появления события А в n одинаковых независимых испытаниях, в каждом из которых вероятность появления события A равно p, распределения по закону Пауссона, если число n очень велико, p очень мало и вероятность P(X = k) появления события A равно k раз вычисляется по Формуле Пауссона:
, где l = np.
Нормальное распределение относится к числу наиболее распространенных и важных, оно часто используется для приближенного описания многих случайных явлений, например, для случайного отступления фактического размера изделия от номинального, рассеяния снарядов при артиллерийской стрельбе и во многих других ситуациях, в которых на интересующий нас результат воздействует большое количество независимых случайных факторов, среди которых нет сильно выделяющихся.
Случайная величина X имеет нормальное распределение вероятностей с параметрами а и σ2 (краткое обозначение: X ~ N(a, σ2)), если ее плотность распределения задается формулой:
- ∞ < x<∞.
Распределение хи-квадрат.. Пусть случайные величины X1,X2,…,Xn — независимы, и каждая из них имеет стандартное нормальное распределение N(0, 1). Говорят, что случайная величина χn2, определенная как:
имеет распределение хи-квадрат с n степенями свободы. Для обозначения этого распределения также обычно используется выражение χn2
F-pacnpe деление
Пусть Y1,…,Yn; X1,…,Xn (где m, n — натуральные числа) обозначают независимые случайные величины, каждая из которых распределена по стандартному нормальному закону N(0, 1). Говорят, что случайная величина F, определенная как
имеет F-распределение с параметрами шип. Натуральные числа m, n называют числами степеней свободы.