Средняя арифметическая для интервального ряда
При расчете средней арифметической для интервального вариационного ряда сначала определяют среднюю для каждого интервала, как полусумму верхней и нижней границ, а затем — среднюю всего ряда. В случае открытых интервалов значение нижнего или верхнего интервала определяется по величине интервалов, примыкающих к ним.
Средние, вычисляемые из интервальных рядов являются приближенными.
Пример 3. Определить средний возраст студентов вечернего отделения.
Возраст в годах !!х?? | Число студентов | Среднее значение интервала | Произведение середины интервала (возраст) на число студентов |
до 20 | (18 + 20) / 2 =19 18 в данном случае граница нижнего интервала. Вычисляется как 20 — (22-20) | ||
20 — 22 | (20 + 22) / 2 = 21 | ||
22 — 26 | (22 + 26) / 2 = 24 | ||
26 — 30 | (26 + 30) / 2 = 28 | ||
30 и более | (30 + 34) / 2 = 32 | ||
Итого |
Средние, вычисляемые из интервальных рядов являются приближенными. Степень их приближения зависит от того, в какой мере фактическое распределение единиц совокупности внутри интервала приближается к равномерному.
При расчете средних в качестве весов могут использоваться не только абсолютные, но и относительные величины (частость):
Средняя арифметическая обладает целым рядом свойств, которые более полно раскрывают ее сущность и упрощают расчет:
1. Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты, т.е.
2.Средняя арифметическая суммы варьирующих величин равна сумме средних арифметических этих величин:
3.Алгебраическая сумма отклонений индивидуальных значений признака от средней равна нулю:
4.Сумма квадратов отклонений вариантов от средней меньше, чем сумма квадратов отклонений от любой другой произвольной величины , т.е:
5. Если все варианты ряда уменьшить или увеличить на одно и то же число , то средняя уменьшится на это же число :
6.Если все варианты ряда уменьшить или увеличить в раз, то средняя также уменьшится или увеличится в раз:
7.Если все частоты (веса) увеличить или уменьшить в раз, то средняя арифметическая не изменится:
36. Средняя гармоническая: простая и взвешенная.
Средняя гармоническая — используется в тех случаях когда известны индивидуальные значения признака и произведение , а частоты неизвестны.
В примере ниже — урожайность известна, — площадь неизвестна (хотя её можно вычислить делением валового сбора зерновых на урожайность), — валовый сбор зерна известен.
Среднегармоническую величину можно определить по следующей формуле:
Формула средней гармонической:
Пример. Вычислить среднюю урожайность по трем фермерским хозяйствам
Фермерское хозяйство | Урожайность ц/га (х) | Валовый сбор зерновых Ц (z = x*f) |
18,2 | ||
20,4 | ||
23,5 | ||
Итого |
Ответ: 20,1 ц/га
Гармоническая простая
В тех случаях, когда произведение одинаково или равно 1 (z = 1) для расчета применяют среднюю гармоническую простую, вычисляемую по формуле:
Средняя гармоническая простая — показатель, обратный средней арифметической простой, исчисляемый из обратных значений признака.
37. Средняя геометрическая и средняя квадратичная.
Среднегеометрическая величина дает возможность сохранять в неизменном виде не сумму, а произведение индивидуальных значений данной величины. Ее можно определить по следующей формуле:
Среднегеометрические величины наиболее часто используются при анализе темпов роста экономических показателей.