Определение Data Mining

Традиционная математическая статистика, долгое время претендовавшая на роль основного инструмента анализа данных, откровенно не справляется с возникшими проблемами. Главная причина – концепция усреднения по выборке, приводящая к операциям над фиктивными величинами (типа средней температуры пациентов в больнице, средней высоты дома на улице и т.п.).

В основу Data Mining (discovery-driven data mining) положена концепция шаблонов (паттернов), отражающих фрагменты многоаспектных взаимоотношений в данных. Эти шаблоны представляют собой закономерности, свойственные подвыборкам данных, которые могут быть компактно выражены в понятной человеку форме. Поиск шаблонов производится методами, не ограниченными рамками априорных предположений о структуре выборки и виде распределений значений анализируемых показателей.

Важное положение Data Mining – нетривиальность разыскиваемых шаблонов. Это означает, что найденные шаблоны должны отражать неочевидные, неожиданные (unexpected) регулярности в данных, составляющих так называемые скрытые знания (hidden knowledge). К обществу пришло понимание того, что сырые данные (raw data) содержат глубинные пласт знаний, при грамотной раскопке которого могут быть обнаружены настоящие самородки.

Существует множество определений Data Mining, но в целом они совпадают в выделении 4-х основных признаков. Вот определение, которое дал Григорий Пиатецкий-Шапиро (G. Piatetsky-Shapiro, GTE Labs.), один из ведущих мировых экспертов в области Data Mining:

Data Mining - это процесс обнаружения в сырых данных

· ранее неизвестных,

· нетривиальных,

· практически полезных,

· доступных интерпретации знаний (закономерностей), необходимых для принятия решений в различных сферах человеческой деятельности.

Нахождение скрытых закономерностей в данных, взаимосвязей между различными переменными в базах данных, моделирование и изучение сложных систем на основе истории их поведения - вот предмет и задачи Data Mining.

Результаты Data Mining - эмпирические модели, классификационные правила, выделенные кластеры и т.д. - можно затем инкорпорировать в существующие системы поддержки принятия решений и использовать их для прогноза будущих ситуаций.

Области применения Data Mining

Сферы применения Data Mining ничем не ограничены – она везде, где имеются какие-либо данные.

Data Mining представляет большую ценность для руководителей и аналитиков в их повседневной действительности. Деловые люди осознали, что с помощью методов Data Mining они могут получить ощутимые преимущества в конкурентной борьбе.

Розничная торговля

Анализ деятельности торговых точек, построение профиля покупателя, управление ресурсами.

Предприятия розничной торговли сегодня собирают подробную информацию о каждой отдельной покупке, используя кредитные карточки с маркой магазина и компьютеризованные системы контроля. Вот типичные задачи, которые можно решать с помощью Data Mining в сфере розничной торговли:

ü Анализ потребительской корзины

Предназначен для выявления товаров, которые покупатели стремятся приобретать вместе. Знание покупательской корзины необходимо улучшения рекламы, выработки стратегии создания запасов товаров, способов их раскладки в торговых залах.

ü Исследование временных шаблонов

Помогает торговым предприятиям принимать решения о создании товарных запасов. Оно дает ответы на вопросы типа: «Если сегодня покупатель приобрел видеокамеру, то через какое время он вероятнее всего купит новые батарейки и пленку?»

ü Создание прогнозирующих моделей

Дает возможность торговым предприятиям узнавать характер потребностей различных категорий клиентов с определенным поведением, например, покупающих товары известных дизайнеров или посещающих распродажи. Эти знаний нужны для разработки точно направленных, экономичных мероприятий по продвижению товаров.

Банковское дело

Анализ кредитных рисков, привлечение и удержание клиентов, управление ресурсами.

Достижения технологии Data Mining используются в банковском деле для решения следующих задач:

ü Выявление мошенничества с кредитными карточками.

Путем анализа прошлых транзакций, которые впоследствии оказались мошенническими, банк выявляет стереотипы такого мошенничества.

ü Сегментация клиентов.

Разбивая клиентов на различные категории, банки делают свою маркетинговую политики более целенаправленной и результативной, предлагая различные виды услуг разным группам клиентов.

ü Прогнозирование изменений клиентуры.

Data Mining помогает банкам строить прогнозные модели ценности своих клиентов и соответствующим образом обслуживать каждую категорию.

Телекоммуникации

Привлечение клиентов, ценовая политика, анализ отказов, предсказание пиковых нагрузок, прогнозирование поступления средств.

В области телекоммуникации методы Data Mining помогают компаниям более энергично продвигать свои программы маркетинга и ценообрахования, чтобы удержать существующих клиентов и привлекать новых. Среди типичных мероприятий отметим следующие:

ü Анализ записей о подробных характеристиках вызовов.

Назначение такого анализа – выявление категорий клиентов с похожими стереотипами пользования их услугами и разработка привлекательных наборов цен и услуг.

ü Выявление лояльности клиентов.

Data Mining можно использовать для определения характеристик клиентов, которые один раз воспользовавшись услугами данной компании, с большой долей вероятности останутся ей верными (прогноз постоянства клиента). В итоге, средства, выделяемые на маркетинг, можно тратить там, где отдача больше всего.

Страхование

ü Привлечение и удержание клиентов, прогнозирование финансовых показателей.

Страховые компании в течение ряда лет накапливают большие объемы данных. Здесь обширное поле деятельности для методов Data Mining:

ü Выявление мошенничества.

Страховые компании могут снизить уровень мошенничества, отыскивая определенные стереотипы в заявлениях о выплате страхового возмещения, характеризующих взаимоотношения между юристами, врачами и заявителями.

ü Анализ риска.

Путем выявления сочетаний факторов, связанных с оплаченными заявлениями, страховщики могут уменьшить свои потери по обязательствам. Известен случай, когда в США крупная страховая компания обнаружила, что суммы, выплаченные по заявлениям людей, состоящих в браке, вдвое превышают суммы по заявлениям одиноких людей. Компания отреагировала на это новое знание пересмотром своей общей политики предоставления скидок семейным клиентам.

Наши рекомендации