Последовательность (Sequence), или последовательная ассоциация (sequential association)
Краткое описание. Последовательность позволяет найти временные закономерности между транзакциями. Задача последовательности подобна ассоциации, но ее целью является установление закономерностей не между одновременно наступающими событиями, а между событиями, связанными во времени (т.е. происходящими с некоторым определенным интервалом во времени). Другими словами, последовательность определяется высокой вероятностью цепочки связанных во времени событий. Фактически, ассоциация является частным случаем последовательности с временным лагом, равным нулю. Эту задачу Data Mining также называют задачей нахождения последовательных шаблонов (sequential pattern).
Правило последовательности: после события X через определенное время произойдет событие Y.
Прогнозирование (Forecasting)
Краткое описание. В результате решения задачи прогнозирования на основе особенностей исторических данных оцениваются пропущенные или же будущие значения целевых численных показателей.
Для решения таких задач широко применяются методы математической статистики, нейронные сети и др.
Определение отклонений или выбросов (Deviation Detection), анализ отклонений или выбросов
Краткое описание. Цель решения данной задачи - обнаружение и анализ данных, наиболее отличающихся от общего множества данных, выявление так называемых нехарактерных шаблонов. О
ценивание (Estimation)
Задача оценивания сводится к предсказанию непрерывных значений признака.
Анализ связей (Link Analysis) - задача нахождения зависимостей в наборе данных.
Визуализация (Visualization, Graph Mining)
В результате визуализации создается графический образ анализируемых данных. Для решения задачи визуализации используются графические методы, показывающие наличие закономерностей в данных.
Пример методов визуализации - представление данных в 2-D и 3-D измерениях.
Подведение итогов (Summarization) - задача, цель которой - описание конкретных групп объектов из анализируемого набора данных.
Классификация задач Data Mining
Согласно классификации по стратегиям, задачи Data Mining подразделяются на следующие группы:
обучение с учителем;
обучение без учителя;
другие.
Категория обучение с учителем представлена следующими задачами Data Mining: классификация, оценка, прогнозирование.
Категория обучение без учителя представлена задачей кластеризации.
В категорию другие входят задачи, не включенные в предыдущие две стратегии.
Задачи Data Mining, в зависимости от используемых моделей, могут быть дескриптивными и прогнозирующими. Эти типы моделей будут подробно описаны в лекции, посвященной процессу Data Mining.
В соответствии с этой классификацией, задачи Data Mining представлены группами описательных и прогнозирующих задач.
В результате решения описательных (descriptive) задач аналитик получает шаблоны, описывающие данные, которые поддаются интерпретации.
Эти задачи описывают общую концепцию анализируемых данных, определяют информативные, итоговые, отличительные особенности данных. Концепция описательных задач подразумевает характеристику и сравнение наборов данных. Характеристика набора данных обеспечивает краткое и сжатое описание некоторого набора данных. Сравнение обеспечивает сравнительное описание двух или более наборов данных.
Прогнозирующие (predictive) основываются на анализе данных, создании модели, предсказании тенденций или свойств новых или неизвестных данных.
Достаточно близким к вышеупомянутой классификации является подразделение задач Data Mining на следующие: исследования и открытия, прогнозирования и классификации, объяснения и описания.
Автоматическое исследование и открытие (свободный поиск)
Пример задачи: обнаружение новых сегментов рынка.
Для решения данного класса задач используются методы кластерного анализа, прогнозирование и классификация
Пример задачи: предсказание роста объемов продаж на основе текущих значений.
Методы: регрессия, нейронные сети, генетические алгоритмы, деревья решений.
Задачи классификации и прогнозирования составляют группу так называемого индуктивного моделирования, в результате которого обеспечивается изучение анализируемого объекта или системы. В процессе решения этих задач на основе набора данных разрабатывается общая модель или гипотеза.
Объяснение и описание
Пример задачи: характеристика клиентов по демографическим данным и историям покупок.
Методы: деревья решения, системы правил, правила ассоциации, анализ связей.
Если доход клиента больше, чем 50 условных единиц, и его возраст - более 30 лет, тогда класс клиента - первый.
В интерпретации обобщенной модели аналитик получает новое знание. Группировка объектов происходит на основе их сходства.
Связь понятий