Аналитическая геометрия
Прямая на плоскости
Всякая прямая линия определяется в заданной прямоугольной декартовой системе координат Оху уравнением первой степени относительно переменных х и у.
Ах + Ву + С=0(6.2.1)
общее уравнение прямой, гдеАи В - координаты одного из нормальных векторов этой прямой.
(6.2.2)
каноническое уравнение прямой, где (х0,у0) -координаты точки, черезкоторую проходит прямая, lи т-координаты направляющего вектора .
M0(x0,y0) |
xCosa+yCosβ-p = 0 (6.2.3)
нормированное уравнение прямой, где Cosa,Cosβ - координаты единичного вектора нормали прямой (он направлен из начала координат к прямой), р- расстояние прямой от начала координат .
y |
X |
O |
p |
у = кх + b (6.2.4)
уравнение с угловым коэффициентом к = tga, α - угол наклона прямой к осиОх, b - величина отрезка, отсекаемого на оси Оу.
у |
х |
b |
a |
(6.2.5)
уравнение прямой, проходящей через две данные точки (х1 ,у1) и (х2 ,у2).
(6.2.6)
параметрические уравнения прямой, проходящей через точку (хо,уо) в направлении вектора = {1,т).
(6.2.7)
уравнение прямой «в отрезках», где а и bвеличины отрезков отсекаемых прямой на осях охи оу соответственно.
Взаимное расположение двух прямых, заданных уравнениями (1),(2),(3), вполне определяется взаимным расположением векторов с ними связанных, поэтому условия параллельности, ортогональности и угол между прямыми получены из соответствующих условий для векторов. Для прямых, заданных уравнениями вида (4), выпишем эти условия. Если y=k1х + b1и у = к2х + Ь2уравнения этих прямых, то
k1 =k2–условие параллельности, (6.2.8)
k1×k2=-1 –условие перпендикулярности, (6.2.9)
-тангенс угла между прямыми (6.2.10)
Если дана прямая общим уравнением Aх + Ву + С=О, то его можно нормировать умножением на нормирующий множитель
, (6.2.11)
где знак выбирается противоположным знаку свободного члена С из общего уравнения
μАх + μBу + μC = 0
Нормированное уравнение позволяет получить отклонение δ и расстояние dдля данной точки М0(х0,у0) от прямой по формуле δ = х0cosα + у0cosβ - ρ,
. (6.2.12)
Пример6.2.1. Найти угол между прямыми
.
Решение.
,
тогда другой угол между прямыми 135°.
Пример 6.2.2. Найти проекцию точки Мо(4,9) на прямую, проходящую через точки М1(3,1) и М2(5,2).
Решение. Найдем уравнение прямой М1М2 по формуле (5)
,
откуда . Ищем уравнение перпендикуляра к этой прямой, проходящего через точку Мов виде (4). Пользуясь условиемперпендикулярности кгк1=-1, найдем . Так как координаты Модолжны удовлетворять искомому уравнению, то в уравнение у=-2x+bподставим координаты Мо: 9 =-2×4+b.
Получим b= 17. Точка пересечения заданной прямой и этого перпендикулярадаст проекцию Мона данную прямую.
Решим систему:
.
Получим х= 7,у = 3.
Пример 6.2.3. Найти расстояние между параллельными прямыми
у=2х-З и у=2х + 5.
Решение. На первой прямой найдем какую-нибудь точку. Пусть х =1, тогда у=-1. Получим точку Мо(1,-1).
Приведем уравнение второй прямой к нормированному виду:
2x-y+5=0, ,
- нормированное уравнение. Тогда по формуле (6.2.12) получим
(лин.ед.)
Плоскость
Уравнение плоскости с нормальным вектором = {А,В,С} и проходящей через точку M0(x0,y0,zo) имеет вид
А(х -х0) + В(у - у0) + C(z - z0) = 0. (6.2.13)
Из этого уравнения получается общее уравнение плоскости
Ax + By + Cz+D=0, (6.2.14)
представляющее собой уравнение первой степени относительно переменных x,y и z.
Геометрически удобное уравнение в отрезках
, (6.2.15)
где а,b,с - величины отрезков, отсекаемых плоскостью на осях координатсоответственно.
Нормированное уравнение плоскости
xcosα + ycosβ + zcosg-ρ = 0, (6.2.16)
где ρ - расстояние плоскости от начала координат; a,β,g - углы образованные единичным вектором нормали к плоскости (он направлен от начала координат к плоскости) с соответствующими осями координат.
Если дана плоскость общим уравнением (6.2.14), то
μАх + μDy + μСz+ μD= О
будет нормированным уравнением той же плоскости, если
,
где знак выбирается противоположным знаку D - свободного члена в общем уравнении.
Нормированное уравнение (6.2.16) позволяет получить отклонение δ и
расстояние d от заданной точки Мо(х0, у0,z0) до плоскости
δ = x0cosα + y0cosβ + z0cosγ -ρ, (6.2.17)
d = \ δ \. (6.2.18)
Условия перпендикулярности, параллельности и угол между плоскостями совпадают с аналогичными условиями для векторов, нормальных к этим плоскостям.
Прямая в пространстве
Прямая в пространстве может быть задана как линия пересечения двух плоскостей
(6.2.19)
причем должно нарушаться хотя бы одно из равенств
,
чтобы эти плоскости пересекались.
Другой способ задания прямой:
(6.2.20)
каноническими уравнениями, где М0(x0,у0,z0) - точка, через которую проходит прямая в направлении вектора = {1,т,п}. Тогда условия параллельности, перпендикулярности и угол междупрямыми могут быть получены как соответствующие условия для направляющих векторов этих прямых.
Из (6.2.20) могут быть получены уравнения прямой, проходящей через две точки М1{x1,y1,z1) и M2(x2,y2,z2)
(6.2.21)
и параметрические уравнения прямой:
.(6.2.22)
Если прямая задана уравнениями (6.2.19), то можно получить канонические уравнения этой прямой, если взять какую-нибудь точку, задавая, например, х0и отыскивая соответствующие у0и z0из системы (6.2.19), и получить направляющий вектор прямой
Если прямая задана уравнениями (6.2.20), а плоскость общим уравнением (6.2.14), то условие параллельности прямой и плоскости
Аl + Вт+Сп = 0, (6.2.23)
а условие перпендикулярности
.
Пример 6.2.4. Привести уравнение прямой
к каноническому виду.
Решение. Найдем какую-нибудь точку на этой прямой. Пусть х = 0, тогда система примет вид
.
Отсюда y=-2, . Получим точку Мо(0;-2; )Найдем направляющий вектор
Канонические уравнения прямой
Пример 6.2.5. Составить уравнения движения точки M(x,y,z), которая имеет начальное положение Мо(1;-2;4), движется прямолинейно и равномерно в направлении вектора = {2; 3; 6} со скоростью , .
Решение. Тогда . Искомые уравнения будут
Пример 6.2.5. Найти расстояние точки М0(1;2;0) от прямой
Решение. Проведем через точку Моплоскость α, перпендикулярную данной прямой и найдем М1 - точку пересечения плоскости α с данной прямой. Тогда искомое расстояние будет расстоянием от Мо до М1. Для плоскости α воспользуемся уравнением вида (13), так как известна точка М0(1;2;0) на ней лежащая и нормальным вектором может служитьнаправляющий вектор прямой а= {2,5,1}. Получим
2(х -1) + 5(у - 2) + 1(z- 0) = 0 ,
или
2x + 5y + z-12 = 0.
Найдем точку пересечения плоскости α и данной прямой, решив систему из уравнений плоскости α и параметрических уравнений данной прямой:
Исключая x,y,z, найдем t=-0,5. Тогда х=1,y=1,5,z=2,5. Точка М1(1;1,5;2,5). Расстояние М0М1:
(лин.ед.).
Пример 6.2.6. Найти угол между прямой
и плоскостью
х + 2у - 3z - 1 = 0.
Решение. Рассмотрим нормальный вектор плоскости = {1;2;-3} и направляющий вектор прямой = {2;3;5}. Косинус угла между этимивекторами равен синусу угла между прямой и плоскостью:
,
.