Спин, магнитный и электрический моменты ядер
Спин ядра
Ядро, как пространственно ограниченная и связанная система взаимодействующих между собой нуклонов, в определенных случаях может рассматриваться в целом как одна микрочастица. Так как нуклоны, из которых состоит ядро, обладают собственным механическим моментом, или спином, а также совершают движение относительно друг друга (орбитальное движение относительно центра инерции ядра), то и ядра должны иметь собственный механический момент (далее просто момент) или спин.
Спин ядра есть векторная сумма полных моментов отдельных нуклонов, каждый из которых складывается из орбитального момента и собственного момента (спина) нуклона , так что
, а . | (1.6.1) |
Возможна другая схема сложения моментов отдельных нуклонов, дающая другой результат, когда сначала отдельно суммируются векторы спинов, а затем векторы орбитальных моментов всех нуклонов, и полученные два вектора складываются. Однако, поскольку ядерные силы не центральны (см. §1.9 п.7) и в ядре существует спин-орбитальное взаимодействие (см. §2.3 п.1), то по этой причине в теории ядра используют первую схему.
Естественной единицей измерения момента импульса в квантовой механике служит постоянная Планка ħ = 1,0546·10-34 Дж·с, имеющая размерность момента импульса.
Вектор момента любых микрочастиц, как, впрочем, и спин ядра, обладает своеобразными свойствами.
1. Абсолютная величина вектора момента любой изолированной физической величины может принимать только дискретные значения:
| | | (1.6.2) |
где I – положительное число, либо целое, либо полуцелое:
I = 0, 1/2, 1, 3/2, ... | (1.6.3) |
Число I называют обычно величиной момента или квантовым числом момента. Следует особо отметить различие между модулем вектора и квантовым числом I, так как последнее является одним из чисел (1.6.3), используемых в формуле (1.6.2) для нахождения модуля вектора . Когда говорят: «момент 1/2», то имеют в виду именно это квантовое число в формуле (1.6.2).
В формуле (1.6.1) квантовое число lk для орбитального момента всегда целое число, lk = 0, 1, 2, … , а нуклоны (и электрон тоже) имеют квантовое число спина s = 1/2 (спин равен 1/2).
2. Мгновенное значение вектора механического момента любой микрочастицы не имеет смысла по той же причине, по которой в квантовой механике не имеет смысла мгновенное значение вектора импульса. Строго фиксированное значение может иметь только абсолютная величина вектора момента (1.6.2) и одна из его пространственных проекций, обычно называемой проекцией на ось Z, которая обозначается как Iz. Проекция момента Iz может принимать случайным образом одно из (2I + 1) значений, уменьшающихся на единицу:
Iz = Iћ, (I – 1)ћ, . . . , -Iћ. | (1.6.4) |
Реализация любой возможной проекции из набора (1.6.4) оказывается равновероятной.
Число возможных проекций на ось Z четно, если I – полуцелое число, и нечетно, если I – целое число. Знак плюс или минус в (1.6.4) означает ориентацию вектора момента на выбранное направление оси Z в пространстве. Однако величины проекций Ix и Iy оказываются совершенно неопределенными[1]и флуктуируют относительно нулевого среднего значения. Учитывая, что
(1.6.5) |
имеем
(1.6.6) |
Таким образом, квадраты проекций вектора момента на оси Х и Y не равны нулю. По этой причине проекция момента Iz всегда меньше абсолютной величины вектора механического момента. Действительно, согласно (1.6.4), максимальное значение = тогда как согласно (1.6.2) .
Все перечисленные выше свойства вектора механического момента обычно демонстрируют с помощью квазиклассической модели (рис. 1.6.1), которая находится в определенном согласии со свойствами квантовомеханического вектора момента. Вектор момента, величина которого вычисляется с помощью (1.6.2), прецессирует относительно оси Z с некоторой угловой скоростью и может ориентироваться вдоль или против направления оси Z только таким образом, чтобы его проекция на ось Z была равна одному из значений от +Iћ до –Iћ через единицу. Этот вектор никогда не может ориентироваться точно по направлению оси Z, поскольку его величина, как отмечено выше, не равна Iћ. Поэтому, помимо величины вектора момента, сохраняющейся во времени величиной является только одна проекция вектора – проекция на ось Z. Полное число проекций Iz вектора момента на рис.1.6.1 равно (2I + 1).
3. Модуль вектора момента сложной системы, составленной из двух подсистем с моментами и , вычисляется из выражения
(1.6.7) |
обычным образом через свои квантовые числа . Сложение векторов и есть сложение их проекций как алгебраических чисел. Для получения всех возможных проекций вектора на ось Z каждая из проекций вектора складывается с каждой из проекций вектора . Таких проекций оказывается всего (2I1 + 1)(2I2 + 1), которые будут образовывать (2Im + 1) векторов , Im = min{I1,I2}, со следующими значениями квантовых чисел:
(1.6.8) |
Соотношение (1.6.8) определяет правило сложения моментов в квантовой механике.
Поскольку каждое значение проекции из (2I1 + 1)(2I2 + 1) возможных реализуется с равной вероятностью, то относительная вероятность образования состояния со спином из возможного набора значений (1.6.8) составит
, | (1.6.9) |
т.е. равна отношению числа возможных проекций вектора к полному числу проекций возможных значений вектора . Величина g называется статистическим фактором или статистическим весом.
4. Любая векторная величина , характеризующая физические свойства микрочастицы, пропорциональна вектору момента :
(1.6.10) |
где а – константа, полностью характеризующая вектор.
В отношении спинов различных ядер наблюдаются следующие опытные закономерности:
а) Для ядер с четными А спины всегда целые, а при нечетном А – всегда полуцелые.
б) Четно-четные ядра (А - четное) в основном состоянии имеют спин равный нулю. Этот факт дает основания полагать, что одноименные нуклоны объединяются в пары (эффект спаривания, см. §1.4 п.3) с противоположно направленными векторами механическими моментами, так что суммарный момент импульса ядра оказывается равным нулю.
в) Нечетно-нечетные ядра (А - четное) имеют целочисленный спин. Это указывает на то, что разноименные нуклоны объединяются в пары с одинаковым направлением векторов механического момента, создавая целочисленный момент (см. §1.11).
г) Ядра с нечетным А имеют полуцелый спин в пределах от 1/2 до 9/2, что крайне мало по сравнению с суммой абсоютных значений полных моментов (см. (1.6.1)) отдельных нуклонов для большинства ядер. По-видимому векторы большинства одноименных нуклонов попарно компенсируются и не участвуют в создании спина ядра.
Магнитный момент ядра
Магнитный момент – основная физическая величина, характеризующая магнитные свойства вещества и вызывающая ориентацию тел относительно вектора внешнего магнитного поля. Магнитными моментами обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. Магнитные моменты отдельных элементарных частиц (электронов, протонов, нейтронов) обусловлены существованием у них спина (см. пояснения к (1.6.10)). Магнитные моменты ядер складываются из собственных магнитных моментов протонов и нейтронов, образующих эти ядра, а также из магнитных моментов, связанных с орбитальным движением протонов (орбитальный магнитный момент нейтрона равен нулю), по тем же правилам, по которым вычисляется спин ядра.
В соответствии с (1.6.10) магнитный момент ядра
, | (1.6.11) |
где g – гиромагнитное отношение, равное отношению величин магнитного и механического моментов:
(1.6.12) |
В (1.6.12) приняты следующие обозначения: е– элементарный электрический заряд; mp – масса протона; с – скорость света в вакууме; γ– безразмерное число, называемое гиромагнитным множителем. Абсолютное значение вектора магнитного момента ядра
, | (1.6.13) |
где I - квантовое число спина ядра. Величина
5,05×10-27 Дж/Тл | (1.6.14) |
называется ядерным магнетоном Бора. Магнетон Бора является такой же удобной единицей измерения магнитных моментов ядер и нуклонов, какой служит элементарный электрический заряд е для измерения заряда микрочастиц, или постоянная планка для измерения их механических моментов. Точно так же безразмерное число γ= М/μБ служит для измерения магнитных моментов ядер в единицах ядерного магнетона Бора, подобно тому, как атомный номер служит для измерения заряда ядер в единицах е, или квантовые числа служат для измерении механических моментов в единицах постоянной Планка. Ядерный магнетон Бора в =1836 раз меньше электронного МБ магнетона Бора, который используется в атомной физике.
Максимальная величина проекция магнитного момента ядра на ось Z, которая совпадает с направлением внешнего по отношению к ядру магнитного поля, будет равна, согласно (1.6.4):
(1.6.15) |
Методы экспериментального определения спина и магнитного момента ядер тесно между собой связаны и основаны на исследовании взаимодействия магнитного момента ядра с магнитным полем. Исторически одним из первых методов определения спина ядер было исследование сверхтонкой структуры спектральных линий атомов, возникающей в результате взаимодействия магнитного момента ядра с магнитным полем , которое создается валентными электронами атома в месте расположения ядра. Энергия взаимодействия магнитного момента ядра с магнитным полем электронной оболочкой равна
(1.6.16) |
Вектор магнитного поля направлен противоположно вектору полного механического момента электронной оболочки атома и равен, согласно (1.6.10),
(1.6.17) |
Константа а в (1.6.17) может быть вычислена методами квантовой электродинамики.
Таким образом, из (1.6.11), (1.6.12) и (1.6.17) получаем
(1.6.18) |
Полный механический момент атома будет равен векторной сумме спина ядра и механического момента электронной оболочки:
(1.6.19) |
Возводим в квадрат вектор :
(1.6.20) |
Из последнего соотношения находим скалярное произведение и подставляем его в (1.6.18):
(1.6.21) |
Выразив в (1.6.21) квадраты модулей векторов моментов через их квантовые числа, получим окончательно:
(1.6.22) |
Таким образом, при фиксированных значениях I и Je величина энергии U взаимодействия магнитного момента ядра с магнитным полем атома определяется возможными значениями вектора , который, согласно правилу (1.6.8) сложения моментов, может иметь (2I + 1) или (2Jе + 1) значений (берется наименьшее из чисел I или Jе). Следовательно, энергия атома для фиксированных I и Jе расщепляется на (2I + 1) или (2Jе + 1) близко расположенных подуровней (см. рис.1.6.2), что и определяет число спектральных линий сверхтонкого расщепления. Рассмотрим возможные случаи.
1. Jе > I. По правилу сложения моментов, квантовое число полного момента F может принимать (2I + 1) значений, которые и будут определять число линий сверхтонкого расщепления. Подсчитав это число и приравняв его числу (2I + 1) непосредственно находим спин ядра (квантовое число спина).
2. 1 > Jе. В этом случае, если линий сверхтонкого расщепления больше двух, применяют правило интервалов. Величина интервала ΔU12, т.е. разность значений энергии U1 и U2, которые определяются для двух соседних значений F (F = I + Je) и F-1 при фиксированных величинах Jе и I (см. рис.1.6.2), равна:
, | (1.6.23) |
а величина интервала ΔU23, отвечающая двум соседним значениям F-1 и F-2, равна соответственно:
(1.6.24) |
Отношение соседних интервалов и
. | (1.6.25) |
По измеренному отношению и зная Jе, определяется квантовое число I спина ядра.
3. I > Jе, а линий сверхтонкой структуры всего две и правило интервалов применить нельзя (интервал всего один). Очевидно, что в этом случае Jе = 1/2 (2·1/2 + 1 = 2). Тогда вектор может принимать два значения: I + 1/2 и I - 1/2. Отношение интенсивностей k спектральных линий равно отношению соответствующих статистических весов (1.6.9):
. | (1.6.26) |
Однако измерение отношения интенсивностей линий выполняется недостаточно точно и требуется дополнительная информация для установления спина ядра.
Спин ядра можно также определить по расщеплению спектральных линий (эффект Зеемана) в магнитном поле, создаваемым внешним макроскопическим током, например катушкой с током.
Особенно точным методом определения магнитных моментов ядер является метод ядерного магнитного резонанса (ЯМР). Идея метода (И. Раби, 1939) заключается в принудительном изменении ориентации магнитного момента ядра (а, следовательно, и спина), находящегося в сильном магнитном поле, под действием слабого высокочастотного магнитного поля определенной (резонансной) частоты ω0. Если образец поместить в сильное постоянное внешнее магнитное поле , то магнитный момент будет совершать прецессию вокруг направления (рис.1.6.3) с частотой ω0. Наименьшая энергия взаимодействия магнитного момента ядра и сильного магнитного поля равна
. | (1.6.27) |
Для перехода на следующий уровень (изменение проекции вектора ) потребуется энергия
, | (1.6.28) |
которой соответствует квант энергии , т.е.
. | (1.6.29) |
Необходимая энергия сообщается слабым высокочастотным полем , направление которого перпендикулярно вектору . Когда , то под действием резонансного воздействия высокочастотного поля дискретным образом изменяется положение вектора (резонансное «опрокидывание» магнитного момента из положения 0 в положение 1 на рис. 1.6.3), которое может быть замечено по максимуму поглощения высокочастотной электромагнитной энергии в этот момент. Используя полученное таким образом значение , из (1.6.29) определяется гиромагнитный множитель γ (магнитный момент в единицах ).
Резонансные методы измерения магнитных моментов отличаются высокой точностью (до 6 знаков). Метод магнитного резонанса имеет несколько модификаций, в зависимости от способа обнаружения переориентации магнитных моментов в резонансном поле. Этот метод был успешно использован для измерения магнитного момента нейтрона с тем различием, что вместо образцов, содержащих ядра, использовались нейтронные пучки.
В таблице 1.6.1 приведены спины I и приближенныезначения магнитных моментов для нуклонов и некоторых легких, средних и тяжелых ядер. Знак минус у магнитного момента указывает на то, что он направлен противоположно спину. Ядра, имеющие нулевой спин, обладают нулевым магнитным моментом в полном соответствии с (1.6.10). Отличие магнитных моментов нуклонов от целочисленных значений (в единицах, равных ядерному магнетону), а также наличие магнитного момента у нейтрона, имеющего нулевой электрический заряд, еще не объяснено полностью. Однако эти факты с определенностью указывают на то, что нуклоны имеют внутреннюю структуру (см. §1.9 п.8).