Рекомбинация носителей заряда через ловушки
Для нормальной и прогнозируемой работы полупроводниковых приборов важно знать зависимость времени жизни неравновесных (инжектированных) носителей от типа и концентрации примесей, вводимых в кристалл. Обычно, реальные полупроводники содержат примеси нескольких типов, каждая из которых может создавать уровни в запрещенной зоне.
Дефекты решетки, обычно нейтральные в состоянии термодинамического равновесия и способные захватывать подвижные носители заряда одного знака и освобождать их, называют ловушками или центрами захвата. Рассмотрим простейший случай рекомбинации через один тип ловушек. Этот случай изображен на рис. 5.8. Обозначим концентрацию таких ловушек Nt, а их расстояние от дна зоны проводимости – Et. Процесс рекомбинации сводится к следующей последовательности переходов. Нейтральная ловушка захватывает электрон из зоны проводимости, приобретая отрицательный заряд (переход 1), а затем электрон с уровня ловушки переходит в валентную зону, что эквивалентно захвату отрицательно заряженной ловушкой дырки (переход 2). При низкой концентрации свободных дырок вероятность второго процесса может быть низкой; в этом случае возможна обратная термическая эмиссия электрона с ловушки в зону проводимости (переход 3). При низкой концентрации электронов проводимости возможен процесс освобождения дырки, т.e. возвращение дырки в валентную зону (переход 4).
EC 1 2 Et, Nt 3 4 EV | Рис. 5.8. Схема переходов электронов при рекомбинации через примесные ловушки Et. |
Введем следующие обозначения:
Ft– вероятность того, что ловушка заполнена электроном;
1-Ft– вероятность того, что на ловушке нет электрона, т.e. она свободна;
Nt(1-Ft)– число свободных ловушек (не занятых электронами);
γn, γp – коэффициенты захвата неравновесных электронов (индекс n) или дырок (индекс p) ловушками;
βn, βp - коэффициенты ионизации электронов (индекс n) или дырок (индекс p) с ловушек.
Тогда можно расписать скорости генерации и рекомбинации носителей:
Переход 1. Интенсивность захвата электронов ловушками ( ):
(5.36)
Переход 2. Интенсивность возбуждения (ионизации) электронов с ловушек в зону проводимости ( ):
(5.37)
Переход 3. Интенсивность захвата дырок ловушками ( ):
(5.38)
Переход 4. Интенсивность возбуждения дырок в валентную зону ( ):
(5.39)
Для оценки мгновенного времени жизни неравновесных носителей заряда при рекомбинации через ловушки необходимо определить изменение концентрации неравновесных электронов в зоне проводимости dn/dt, которая определяется как разница интенсивностей их захвата и ионизации:
(5.40)
Связь между коэффициентами γn и βn установим исходя из следующих положений. По причинам, изложенным в разделе (5.1), характеристики неравновесных носителей (коэффициенты захвата и ионизации и др.) неотличимы от равновесных. Для равновесных носителей известна функция распределения носителей, которая, для носителей на уровне ловушек, дает:
(5.41)
В условиях термодинамического равновесия скорости ионизации и рекомбинации равны, поэтому dn0/dt =0, и из формулы (5.40) с учетом (5.41) получим:
, где (5.42)
(5.43)
Т.е. n1 – это равновесная концентрация электронов в зоне проводимости, когда уровень Ферми совпадает с уровнем ловушек.
Таким образом, уравнение (5.40) можно представить в виде:
(5.44)
Аналогичным образом можно получить выражение для изменения концентрации неравновесных дырок в валентной зоне как следствие процессов 3 и 4:
, где (5.45)
(5.46)
есть равновесная концентрация дырок в валентной зоне, когда уровень Ферми совпадает с уровнем ловушек.
В стационарном случае число возбуждаемых и захватываемых электронов и дырок в единицу времени одинаково, т.е. dn/dt=dp/dt, тогда из (5.40) и (5.45) можно получить выражение для функции распределения Ft.
(5.47)
Подставляя (5.47) в (5.44), а затем в (5.14) и учитывая, что n1p1=n0p0=ni2 (закон действующих масс), а также n=n0+Δn, p=p0+Δp, получим выражение для времени жизни:
(5.48)
Здесь мы ввели дополнительные обозначения: τp0=(γpNt)-1и τn0=(γnNt)-1. Физический смысл параметров τp0 и τn0 – время жизни неосновных носителей заряда.
Формула (5.48) носит название формулы Шокли-Рида. Формула устанавливает зависимость времени жизни e-h-пар от концентрации основных равновесных носителей заряда n0 и p0, от уровня инжекции Δn, от времени жизни неосновных носителей заряда, от типа и концентрации ловушек Nt.и от температуры (поскольку концентрации являются сильными функциями Т).
В общем виде формула Шокли-Рида сложна для анализа, поэтому рассмотрим частные случаи:
А. Низкий уровень возбуждения. При условии Δn<<(n0+p0) можно получить выражение для времени жизни:
(5.49)
Т.е., при низком уровне возбуждения время жизни электронно-дырочных пар не зависит от концентрации избыточных носиmeлей заряда, а определяется значениями равновесных концентраций электронов и дырок и положением энергетического уровня рекомбинационной ловушки, который задает величины n1 и p1. На основании формулы (5.49) можно построить графическую зависимость времени жизни от концентрации легирующей примеси (положения уровня Ферми в запрещенной зоне) - рис.5.9.
Из формулы (5.49) и рисунка видно, что существует четыре основные области, в которых поведение времени жизни отличается.
Рис. 5.9. Зависимость времени жизни неравновесных носителей заряда от положения уровня Ферми (концентрации легирующей примеси). |
Область 1. Сильно легированный полупроводник n-типа проводимости. Уровень Ферми расположен ниже дна зоны проводимости, но выше энергетического уровня рекомбинационной ловушки, т. е. Et < EF < ЕC. В этом случае справедливы следующие соотношения концентраций носителей заряда: п0>>p0; п0 >> п1; п0>>p1.
Учитывая эти неравенства, из (5.49) получим:
(5.50)
где σp- эффективное сечение захвата дырки, v0 – тепловая скорость носителей.
Таким образом, в сильно легированном полупроводнике п-типа проводимости время жизни неравновесных электронов и дырок постоянно и равно , т.е. определяется временем жизни неосновных равновесных носителей заряда (в данном случае – дырок), а также температурой.
Из формулы (5.50) следует, что время жизни неравновесных носителей уменьшается при увеличении концентрации рекомбинационных ловушек и температуры (посредством тепловой скорости).
Область 2. Полупроводник п-типа проводимостилегирован слабо, так что уровень Ферми лежит в запрещенной зоне ниже энергетического уровня ловушек, но выше середины запрещенной зоны, т. е. Еi < EF < Et. В этом случае имеют место следующие соотношения для концентраций носителей заряда: п0>>p0; п0>>p1; n0< п1. Соответственно выражение для τ приобретает вид:
(5.51)
Т.е. nо мере nонижения уровня Ферми время жизни неравновесных носителей заряда τ растет по экспоненциальному закону. При этом чем ниже опускается уровень Ферми, тем меньше степень заполнения ловушек электронами, поэтому вероятность захвата ловушкой дырки снижается, что ведет к увеличению времени жизни дырки. Это подтверждается данными, представленными на рис. 5.9.
Область 3. Полупроводник p-типа проводимостилегирован слабо, поэтому положение уровня Ферми определяется неравенством (EV-Et)<<EF<Еt, что дает следующие соотношения для концентраций носителей заряда: п0<<p0; p0>>p1; p0< п1. Учитывая эти неравенства, из (5.49) получим:
(5.52)
Таким образом, для акцепторного полупроводника по мере nонижения уровня Ферми от середины запрещенной зоны (т.е. по мере увеличения концентрации акцепторной примеси) время жизни неравновесных носителей заряда уменьшается по экспоненциальному закону. Это происходит потому, что в слабо легированном полупроводнике р-типа почти все ловушки свободные и охотно захватывают электроны из зоны проводимости. С увеличением количества дырок проводимости растет вероятность их рекомбинации с электронами, попавшими на ловушки. При этом интенсивность процесса освобождения электронов с ловушек снижается и время жизни неравновесных носителей заряда уменьшается (рис. 5.9).
Область 4. В сильно легированном полупроводнике p-типа проводимости, положение уровня Ферми определяется неравенством вида ЕV<EF<(ЕV – Et). В этом случае из (5.49) следует:
(5.53)
где σn - эффективное сечение захвата электрона.
Таким образом, в сильно легированном полупроводнике р-тиnа время жизни пары электрон-дырка постоянно, равно τ = τn0, определяется временем жизни равновесных электронов - неосновных носителей заряда и не зависит от положения уровня Ферми. У такого полупроводника все ловушки свободны от электронов и каждый электрон, захваченный ловушкой, немедленно рекомбинирует с дыркой, так как количество дырок в валентной зоне очень велико. Процесс обратного переброса электронов с ловушек в зону проводимости практически полностью отсутствует и не влияет на время жизни.
Б. Высокий уровень возбуждения. Условием большого уровня возбуждения является неравенство Δn>>n0; Δn>>p0; Δn>>n1; Δn>>p1. Поэтому формула (5.48) приводится к виду:
τ∞ ≈ τp0+τn0 = (γn+γp)/γnγpNt. (5.54)
Как следует из формулы (5.54), при высоком уровне возбуждения время жизни неравновесных электронов и дырок τ∞ при рекомбинации через ловушки не зависит от концентрации электронов и дырок, и определяется лишь количеством и характеристиками ловушек.
Правило рекомбинации.
При одновременном действии нескольких видов и механизмов рекомбинации, результирующее время жизни определяется наименьшим временем жизни, соответствующем наиболее вероятному способу рекомбинации.
[1] Использование термина “квазичастица” связано с тем, что дырка существует лишь то время, когда она не рекомбинировала с электроном. Электрон (e) существует всегда, тогда как дырка (h) появляется и исчезает вместе с квантом энергии ( , ) à h является квазичастицей.