Автокорреляция. Пример решения

Для выявления структуры ряда (т. е. состава компонент) строят автокорреляционную функцию.

Автокорреляция уровней ряда – корреляционная между последовательными уровнями одного и того же ряда динамики (сдвинутыми на определенный промежуток времени L – лаг). То есть связь между рядом: Х1, Х2, ... Хn-L и рядом Х1+L, Х2+L, ... Хn, где L – положительное целое число. Автокорреляция может быть измерена коэффициентом автокорреляции.

Лаг (сдвиг во времени) определяет порядок коэффициента автокорреляции. Если L = 1, то имеем коэффициент автокорреляции 1-го порядка rt,t-1. Если L = 2, то коэффициент автокорреляции 2-го порядка rt,t-2 и т.д.

Следует учитывать, что с увеличением лага на единицу число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается на 1. Поэтому обычно рекомендуют максимальный порядок коэффициента автокорреляции, равный n/4.

Рассчитав несколько коэффициентов автокорреляции, можно определить лаг (I), при котором автокорреляция (rt,t-L) наиболее высокая, выявив тем самым структуру временного ряда.

Если наиболее высоким оказывается значение rt,t-1, то исследуемый ряд додержит только тенденцию. Если наиболее высоким оказался rt,t-L, то ряд содержит (помимо тенденции) колебания периодом L.

Если ни один из rt,t-L (l=1;L) не является значимым, можно сделать одно из двух предположений:

• либо ряд не содержит тенденции и циклических колебаний, а его уровень определяется только случайной компонентой;

• либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.

Последовательность коэффициентов автокорреляции 1, 2 и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости значений коэффициентов автокорреляции от величины лага (порядка коэффициента автокорреляции) называют коррелограммой.

Чтобы найти коэффициент корреляции 1-го порядка, нужно найти корреляцию между рядами (расчет производится не по 14, а по 13 парам наблюдений):

Два важных свойства коэффициента автокорреляции:

1) Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. По-этому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

2) По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Сдвигаем исходный ряд на 1 уровней. Получаем следующую таблицу:

yt yt - 1
3.18 4.31
4.31 5.66
5.66 6.89
6.89 9.47
9.47 12.34
12.34 14.36
14.36 18.08
18.08 20.63
20.63 24.3
24.3 30.2
30.2 37.04
37.04 43.81
43.81 48.32

Расчет коэффициента автокорреляции 1-го порядка.

Параметры уравнения авторегрессии.

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции rt,t-1:

Линейный коэффициент корреляции принимает значения от –1 до +1.

Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:

0.1 < rt,t-1 < 0.3: слабая;

0.3 < rt,t-1 < 0.5: умеренная;

0.5 < rt,t-1 < 0.7: заметная;

0.7 < rt,t-1 < 0.9: высокая;

0.9 < rt,t-1 < 1: весьма высокая;

В нашем примере связь между рядами - весьма высокая и прямая.


x y x2 y2 x • y
3.18 4.31 10.11 18.58 13.71
4.31 5.66 18.58 32.04 24.39
5.66 6.89 32.04 47.47
6.89 9.47 47.47 89.68 65.25
9.47 12.34 89.68 152.28 116.86
12.34 14.36 152.28 206.21 177.2
14.36 18.08 206.21 326.89 259.63
18.08 20.63 326.89 425.6 372.99
20.63 24.3 425.6 590.49 501.31
24.3 30.2 590.49 912.04 733.86
30.2 37.04 912.04 1371.96 1118.61
37.04 43.81 1371.96 1919.32 1622.72
43.81 48.32 1919.32 2334.82 2116.9
230.27 275.41 6102.65 8427.36 7162.43

Сдвигаем исходный ряд на 2 уровней. Получаем следующую таблицу:

yt yt - 2
3.18 5.66
4.31 6.89
5.66 9.47
6.89 12.34
9.47 14.36
12.34 18.08
14.36 20.63
18.08 24.3
20.63 30.2
24.3 37.04
30.2 43.81
37.04 48.32

Расчет коэффициента автокорреляции 2-го порядка.

Параметры уравнения авторегрессии.

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции rt,t-2:

x y x2 y2 x • y
3.18 5.66 10.11 32.04
4.31 6.89 18.58 47.47 29.7
5.66 9.47 32.04 89.68 53.6
6.89 12.34 47.47 152.28 85.02
9.47 14.36 89.68 206.21 135.99
12.34 18.08 152.28 326.89 223.11
14.36 20.63 206.21 425.6 296.25
18.08 24.3 326.89 590.49 439.34
20.63 30.2 425.6 912.04 623.03
24.3 37.04 590.49 1371.96 900.07
30.2 43.81 912.04 1919.32 1323.06
37.04 48.32 1371.96 2334.82 1789.77
186.46 271.1 4183.34 8408.79 5916.94

Сдвигаем исходный ряд на 3 уровней. Получаем следующую таблицу:

yt yt - 3
3.18 6.89
4.31 9.47
5.66 12.34
6.89 14.36
9.47 18.08
12.34 20.63
14.36 24.3
18.08 30.2
20.63 37.04
24.3 43.81
30.2 48.32

Расчет коэффициента автокорреляции 3-го порядка.

Параметры уравнения авторегрессии.

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции rt,t-3:

x y x2 y2 x • y
3.18 6.89 10.11 47.47 21.91
4.31 9.47 18.58 89.68 40.82
5.66 12.34 32.04 152.28 69.84
6.89 14.36 47.47 206.21 98.94
9.47 18.08 89.68 326.89 171.22
12.34 20.63 152.28 425.6 254.57
14.36 24.3 206.21 590.49 348.95
18.08 30.2 326.89 912.04 546.02
20.63 37.04 425.6 1371.96 764.14
24.3 43.81 590.49 1919.32 1064.58
30.2 48.32 912.04 2334.82 1459.26
149.42 265.44 2811.38 8376.75 4840.25

Сдвигаем исходный ряд на 4 уровней. Получаем следующую таблицу:

yt yt - 4
3.18 9.47
4.31 12.34
5.66 14.36
6.89 18.08
9.47 20.63
12.34 24.3
14.36 30.2
18.08 37.04
20.63 43.81
24.3 48.32

Расчет коэффициента автокорреляции 4-го порядка.

Параметры уравнения авторегрессии.

Выборочные средние.

Выборочные дисперсии:

Среднеквадратическое отклонение

Коэффициент автокорреляции

Линейный коэффициент автокорреляции rt,t-4:

x y x2 y2 x • y
3.18 9.47 10.11 89.68 30.11
4.31 12.34 18.58 152.28 53.19
5.66 14.36 32.04 206.21 81.28
6.89 18.08 47.47 326.89 124.57
9.47 20.63 89.68 425.6 195.37
12.34 24.3 152.28 590.49 299.86
14.36 30.2 206.21 912.04 433.67
18.08 37.04 326.89 1371.96 669.68
20.63 43.81 425.6 1919.32 903.8
24.3 48.32 590.49 2334.82 1174.18
119.22 258.55 1899.34 8329.28 3965.71
Лаг (порядок) rt,t-L Коррелограмма
*****
0.99 *****
0.99 *****
*****

Вывод: в данном ряду динамики имеется тенденция (rt,t-1 = 0.997 → 1).

Решение было получено и оформлено с помощью сервиса:

Автокорреляция

Вместе с этой задачей решают также:

Тест Дарбина-Уотсона

Выявление тренда методом аналитического выравнивания

Уравнение нелинейной регрессии

Показатели динамики: цепные и базисные

Анализ сезонных колебаний

Аддитивная модель временного ряда

Мультипликативная модель временного ряда

Онлайн сдача дистанционных тестов

Copyright © Semestr.RU

Список литературы

1. Практикум по эконометрике: Учебн. пособие/ Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2006. – 344 с.

2. Эконометрика: Учебник/ Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2006. – 576 с.

3. Эконометрика: Учебно-методическое пособие/ Шалабанов А.К., Роганов Д.А. – Казань: ТИСБИ, 2004. – 198 с.

Наши рекомендации