Хронология развития стандартов скс

До 1984 года здания проектировались практически без учета тех телекоммуникационных сервисов, которые должны были впоследствии функционировать в них. Появлявшиеся приложения передачи данных требовали применения специфических типов кабельных продуктов. Система IBM S/3X работала на твинаксиальных кабелях 100 0м, a Ethernet - на коаксиальных 50 0м. В то время как местные телефонные компании имели возможность монтировать свои кабельные системы для приложений передачи речи на стадии строительства здания, специалисты по установке систем передачи данных получали доступ на объект уже после того, как он был заселен. Инфраструктура подвергалась переделкам, зачастую за счет больших дополнительных затрат, и к неудовольствию конечного пользователя. В этот период речевые кабельные системы имели минимальную структуру. Типичная система в коммерческом здании строилась на основе неэкранированной витой пары (Unshielded Twisted Pair, UTP) с рабочими характеристиками, пригодными только для передачи речи, и имела конфигурацию "звезда". Количество пар, приходящих в ключевые точки варьировалось от 1 до 25.

Максимальные расстояния передачи сигналов и количество кроссовых коммутационных узлов определялись поставщиком сервиса или изготовителем активного оборудования.

Ранние типы кабельных систем, применявшихся для передачи данных в 60-е годы, основывались, как правило, на передаче несбалансированного сигнала по кабелю "витая пара" между хост-компьютерами и терминалами. Такой тип кабельной системы годился только для низкоскоростных коммуникаций, и, по мере того, как скорости передачи росли, ограничения, связанные с технологией передачи несбалансированного сигнала по кабелям "витая пара", стали слишком очевидными.

В середине 70-х годов компания IBM начала производство мэйнфреймов, которые использовали коаксиальный кабель с сопротивлением 93 0м. Создание несколькими годами позже устройства, часто называемого "балун" (BALUN - BALanced/UNbalanced), позволило использовать активное оборудование с коаксиальными интерфейсами в кабельных системах на основе витой пары.

Адаптер типа "балун" осуществляет конвертацию несбалансированного сигнала, передаваемого по коаксиальной среде, в сбалансированный сигнал, который может распространяться по кабелям "витая пара".

После возникновения технологии Ethernet вначале 80-х годов, коаксиальный кабель с сопротивлением 50 0м начал заполнять коммерческие здания. По мере расширения популярности Ethernet, ведущие производители, такие как Cabletron и Bay Networks (бывшая Synoptics), начали предлагать сетевые интерфейсные карты с модульными разъемами вместо коаксиальных коннекторов.

Эта высокоскоростная технология (10BASE-T) требовала применения первоклассного кабеля "витая пара", оптимизированного для передачи данных, который позднее был классифицирован как UTP категории 3.

В середине 80-х годов компания IBM разработала технологию Token Ring, определив в качестве передающей среды двухпарный экранированный кабель "витая пара" (ЭВП) 150 0м (Shielded Twisted Pair, STP). Однако, по мере расширения применения витой пары в сетевых приложениях передачи данных, как альтернатива STP была введена в употребление UTP в качестве передающей среды для приложений Token Ring 4 и 16 Мбит/с.

В течение этого периода пользователи были поставлены перед выбором нескольких типов передающих сред, которые включали в себя UTP, STP, коаксиал, твинаксиал, двойной коаксиал и оптическое волокно. Коннекторы, использовавшиеся с вышеперечисленными кабелями - модульные разъемы, универсальные коннекторы передачи данных (UDC), BNC, твинакс, DB9, DB15, DB25 и разнообразные оптические коннекторы. При приобретении конечным пользователем оборудования у нового производителя или при установке новой системы старая система обычно полностью была обречена на замену. Вместо извлечения ненужных теперь кабелей из телекоммуникационных трасс, они часто оставлялись на своем месте и новая кабельная система прокладывалась поверх старой. Зачастую старые кабельные трассы становились настолько захламленными, что приходилось создавать новые.

Для удовлетворения растущего спроса на телекоммуникационные кабельные системы, которые могли поддерживать различные приложения, производители создавали кабельные системы, которые поддерживали речевые приложения и специфические приложения передачи данных. Несмотря на появление таких тенденций, конечные пользователи все еще были вынуждены делать выбор среди множества кабельных систем от различных производителей. В некоторых случаях была возможна совместимость, в других ее не было. Отсутствие однородности и универсальности вынудило промышленность к разработке стандартов, которые бы гарантировали совместимость между продукцией различных производителей. Для удовлетворения этого требования в 1985 году

Ассоциация электронной промышленности (ЕIА) и Ассоциация телекоммуникационной промышленности (ТIА) организовали работу технических комитетов для разработки однородного семейства стандартов телекоммуникационных кабельных систем. Эти комитеты работали более 6-ти лет в направлении разработки первых упорядоченных стандартов телекоммуникационного каблирования, телекоммуникационных трасс и помещений. Разработанные стандарты получили распространение во многих странах и были выработаны дополнительные спецификации к разделам по администрированию, системам заземления, а также универсальные категории кабельных продуктов и соответствующих коннекторов для среды UTP/STP 100 0м. Работа над стандартами кабельных систем была продолжена новым изданием стандарта ANSI/TIA/EIA-568-A и находящимся в настоящее время на стадии публикации стандартом ANSI/TIA/EIA-568-B, а также выпуском международного стандарта универсальной кабельной системы ISO/IEC 11801 и европейского стандарта универсальной кабельной системы CENELEC EN 50173.

До 1991 года законодателями в телекоммуникационных кабельных системах были компании-производители компьютерной техники. Конечные пользователи зачастую оказывались в неприятном положении из-за противоречивших друг другу требований отдельных производителей по рабочим характеристикам систем и были вынуждены платить большие суммы за монтаж, настройку и эксплуатацию частных систем.

Промышленность средств телекоммуникаций признавала необходимость создания экономичной, эффективной кабельной системы, которая могла бы поддерживать наиболее возможно широкий спектр приложений и оборудования. ЕIА, ТIА и представительный консорциум ведущих телекоммуникационных компаний начали совместную работу по созданию стандарта на телекоммуникационные кабельные системы коммерческих зданий ANSI/EIA/TIA-568-1991 (Commercial Building Telecommunications Cabling Standard).

Дополнительные нормативные документы, описывающие требования и правила по проектированию и монтажу телекоммуникационных кабельных трасс и помещений, администрированию систем, спецификации кабельных компонентов и коммутационного оборудования, были выпущены вслед за ним. Стандарт ANSI/EIA/TIA-568-1991 был пересмотрен в 1995 году и в настоящее время носит название ANSI/TIA/EIA-568-A.

Целью указанных стандартов является описание структурированного каблирования - телекоммуникационной кабельной системы, которая может виртуально поддерживать любые приложения передачи речи, изображения и данных по желанию конечного пользователя.

хронология развития стандартов скс - student2.ru

Рисунок 8 Схема типовой СКС.

В настоящее время по мере того, как все большее количество пользователей переходят к применению открытых систем, выпускаемое активное оборудование проектируется на основе положения, что кабельная часть информационной инфраструктуры соответствует требованиям стандартов, то есть является гарантированно надежной и способной обеспечивать определенные рабочие характеристики. К различным рискам, являющимися следствием нестандартных кабельных систем, можно отнести следующие - сетевые рабочие характеристики ниже определенных стандартами, повышенная стоимость внесения изменений в систему и неспособность системы поддерживать новые технологии. По мере распространения принципов структурированного каблирования стоимость устанавливаемого сетевого оборудования падала, а эффективность передачи данных росла с экспоненциальной зависимостью. Телекоммуникационная инфраструктура переросла в доступный инструмент бизнеса с широкими возможностями.

Структурированная кабельная система (СКС) является основополагающей базой на протяжении всего времени существования информационной сети. Это основа, от которой зависит функционирование всех деловых приложений. Правильно спроектированная, смонтированная кабельная система снижает расходы любой организации на всех фазах своей жизни.

По данным статистики несовершенные кабельные системы являются причиной до 70% всех простоев информационной сети. Монтируя СКС, созданную в соответствии с положениями стандартов, можно эффективно устранять значительную долю времени простоев.

Несмотря на то, что кабельная система, как правило, существует дольше большинства других сетевых компонентов, ее стоимость составляет небольшую часть общих инвестиций в информационную сеть. Таким образом, использование структурированной кабельной систем является весьма убедительным способом инвестирования в производительность любой организации или компании.

Кабельная система является компонентом сети с самым продолжительным временем жизни, дольше которого существует только каркас здания. Кабельная система, созданная на основе стандартов, гарантирует долговременное функционирование сети и поддержку многочисленных приложений, обеспечивая отдачу от инвестиций на всем протяжении ее существования.

Витая пара

Витая пара (twisted pair) - это кабель на медной основе, объединяющий в оболочке одну или более пар проводников. Каждая пара представляет собой два перевитых вокруг друг друга изолированных медных провода. Кабели данного типа зачастую сильно отличаются по качеству и возможностям передачи информации. Соответствия характеристик кабелей определенному классу или категории определяют общепризнанные стандарты (ISO 11801 и TIA-568). Сами характеристики напрямую зависят от структуры кабеля и применяемых в нем материалов, которые и определяют физические процессы, проходящие в кабеле при передачи сигнала.

хронология развития стандартов скс - student2.ru

Рисунок 9 Кабель витая пара (5-й категории)

Кабель типа "витая пара" (TP, Twisted Pair) бывает двух видов: экранированная витая пара (STP, Shielded Twisted Pair) и неэкранированная витая пара (UTP, Unshielded Twisted Pair). Также подразделяется на одножильную и многожильную витую пару, а также витую пару для внешней прокладки.

хронология развития стандартов скс - student2.ru

Рисунок 10 Неэкранированная и экранированная кабель витая пара.

Неэкранированная витая пара (Unshielded Twisted Pair): разделяется на категории 1,2,3,4,5,5e,6;7. Самые распространённые в настоящее время категории - 5 и 5е, со скоростью передачи данных 10,100 и 1000 Мб/с. Кабели выпускаются в 4-парном исполнении. Все пары имеют определённый цвет и шаг скрутки. Обычно две пары предназначены для передачи данных, а две – для передачи голоса. Для соединения кабеля с оборудованием используются вилки и розетки RJ-45. Диаметр кабеля: 22 AWG, 24 AWG, 26 AWG. Чем больше номер, тем меньше его диаметр.

Экранированная витая пара (Shielded Twisted Pair): разделяется на категории 5,5e,6,7. Основное назначение этих кабелей – поддержка высокоскоростных протоколов. Экранированная витая пара хорошо защищает передаваемые сигналы от внешних помех и используется только для передачи данных.

Преимущества и недостатки витой пары:

· плюсы: Простота установки, отказоустойчивость, высокая производительность.

· минусы: Ограниченная длина, слабая помехоустойчивость от наводок (силовые трансформаторы, передающие устройства, лампы дневного света).

Таблица 1 Параметры физического уровня для сетей Ethernet и Fast Ethernet .

  10Base-2 10Base-T 100Base-TX
Кабель Тонкий коаксиальный кабель RG-58 Неэкранированная витая пара категории 3 и 5 Неэкранированная витая пара категории 5e
Максимальная длина сегмента, м
Максимальное расстояние между узлами сети (при использовании повторителей), м
Максимальное число станций в сегменте

Характеристический импеданс соответствует входному импедансу однородной линии передачи бесконечной длины то есть линии передачи предельной длины, терминированной нагрузкой со значением ее собственного характеристического импеданса. В общем случае, характеристический импеданс - это комплексное число с резистивной и реактивной компонентами. Он является функцией частоты передаваемого сигнала и не зависит от длины линии. При очень высоких частотах характеристический импеданс асимптотически стремится к фиксированному резистивному сопротивлению. Например, коаксиальные кабели обладают импедансом 50 или 75 0м на высоких частотах. Типичное значение импеданса для кабелей "витая пара" - 100 0м при частотах свыше 1 МГц.

Затухание сигнала - это отношение в децибелах (дБ) мощности входного сигнала к мощности сигнала на выходе при соответствии импедансов источника и нагрузки характеристическому импедансу кабеля. Значение входной мощности может быть получено путем измерения мощности при непосредственном подключении нагрузки к источнику без прохождения сигнала по кабелю. В случаях, когда в местах терминирования импедансы не идеально соответствуют друг другу, отношение входной мощности к выходной носит название вносимых потерь или вносимого затухания.

Переходное затухание на ближнем конце (Near End Crosstalk, NEXT) - параметр, характеризующий затухание сигнала помехи, наведенного сигналом, проходящим по одной паре проводников, на другую, расположенную поблизости. Измеряется в дБ. Чем выше значение NEXT, тем лучше изоляция помехам между двумя парами проводников.

Обратные потери (потери при отражении). Когда импеданс кабеля и нагрузки не совпадает, сигнал, распространяющийся по кабелю, частично будет отражаться в точке интерфейса кабель-нагрузка.

Мощность отраженного сигнала носит название потерь при отражении или обратных потерь. Чем лучше совместимость импедансов, тем меньше отражаемая мощность и тем ниже обратные потери.

Временная задержка распространения сигнала. Сигнал, распространяющийся от входной точки к выходной, приходит с временной задержкой, величина которой является отношением длины кабеля к скорости распространения сигнала V в передающей среде. В случае идеальной линии передачи, состоящей из двух проводников в вакууме, скорость распространения сигнала равна скорости распространения света в вакууме с. На практике скорость распространения сигнала в кабеле зависит от свойств диэлектрических материалов, окружающих проводники.

Отношение сигнал-шум (SNR) - это соотношение между уровнем принимаемого сигнала и уровнем принимаемого шума, причем уровень сигнала должен значительно превосходить уровень шума для обеспечения приемлемых условий передачи.

Отношение затухания к переходному затуханию (ACR). Соотношение между сигналом и шумом может быть выражено в форме отношения затухания к переходному затуханию (ACR). ACR - это разница между ослабленным сигналом на выходе и вредным наведенным сигналом ("шумом") NEXT.

Волоконно-оптический кабель

Волоконно-оптический кабель – кабель, содержащий одно или несколько оптических волокон для передачи данных в виде света. В зависимости от конструктивного исполнения волоконно-оптические кабели делятся на кабели внутренней и внешней прокладки, а также кабели для шнуров.

Волоконно-оптические коммуникации имеют ряд преимуществ по сравнению с электронными системами, использующими передающие среды на металлической основе. В волоконно-оптических системах передаваемые сигналы не искажаются ни одной из форм внешних электронных, магнитных или радиочастотных помех. Таким образом, оптические кабели полностью невосприимчивы к помехам, вызываемым молниями или источниками высокого напряжения.

Цифровые вычислительные системы, телефония и видеовещательные системы требуют новых направлений для улучшения передающих характеристик. Большая ширина спектра оптического кабеля означает повышение емкости канала. Кроме того, более длинные отрезки кабеля требуют меньшего количества репитеров, так как волоконно-оптические кабели обладают чрезвычайно низкими уровнями затухания. Это свойство идеально подходит для широковещательных и телекоммуникационных систем.

По сравнению с обычными коаксиальными кабелями с равной пропускной способностью, меньший диаметр и вес волоконно-оптических кабелей означает сравнительно более легкий монтаж, особенно в заполненных трассах. 300 метров одноволоконного кабеля весят около 2,5 кг. 300 метров аналогичного коаксиального кабеля весят 32 кг - приблизительно в 13 раз больше.

Основные элементы оптического волокна

Ядро. Ядро - светопередающая часть волокна, изготавливаемая либо из стекла, либо из пластика. Чем больше диаметр ядра, тем большее количество света может быть передано по волокну.

Демпфер. Назначение демпфера - обеспечение более низкого коэффициента преломления на границе с ядром для переотражения света в ядро таким образом, чтобы световые волны распространялись по волокну.

Оболочка. Оболочки обычно бывают многослойными, изготавливаются из пластика для обеспечения прочности волокна, поглощения ударов и обеспечения дополнительной защиты волокна от воздействия окружающей среды. Такие буферные оболочки имеют толщину от 250 до 900 мкм.

хронология развития стандартов скс - student2.ru

Рисунок 11 Оптический кабель

Размер волокна в общем случае определяется по внешним диаметрам его ядра, демпфера и оболочки. Например, 50/125/250 - характеристика волокна с диаметром ядра 50 мкм, диаметром демпфера 125 мкм и диаметром оболочки 250 мкм. Оболочка всегда удаляется при соединении или терминировании волокон.

Тип волокна идентифицируется по типу путей, или так называемых "мод", проходимых светом в ядре волокна. Существует два основных типа волокна - многомодовое и одномодовое. Ядра многомодовых волокон могут обладать ступенчатым или градиентным показателями преломления. Многомодовое волокно со ступенчатым показателем преломления получило свое название от резкой, ступенчатой, разницы между показателями преломления ядра и демпфера. В более распространенном многомодовом волокне с градиентным показателем преломления лучи света также распространяются в волокне по многочисленным путям. В отличие от волокна со ступенчатым показателем преломления, ядро с градиентным показателем содержит многочисленные слои стекла, каждый из которых обладает более низким показателем преломления по сравнению с предыдущим слоем по мере удаления от оси волокна. Результатом формирования такого градиента показателя преломления является то, что лучи света ускоряются во внешних слоях и их время распространения в волокне сравнивается с временем распространения лучей, проходящих по более коротким путям ближе к оси волокна.

Таким образом, волокно с градиентным показателем преломления выравнивает время распространения различных мод так, что данные по волокну могут быть переданы на более дальние расстояния и на более высоких скоростях до того момента, когда импульсы света начнут перекрываться и становиться неразличимыми на стороне приемника.

Волокна с градиентным показателем представлены на рынке с диаметрами ядра 50, 62,5 и 100 мкм.

Одномодовое волокно, в отличие от многомодового, позволяет распространяться только одному лучу или моде света в ядре. Это устраняет любое искажение, вызываемое перекрытием импульсов. Диаметр ядра одномодового волокна чрезвычайно мал - приблизительно 5 -10 мкм. Одномодовое волокно обладает более высокой пропускной способностью, чем любой из многомодовых типов. Например, подводные морские телекоммуникационные кабели могут нести 60000 речевых каналов по одной паре одномодовых волокон.

хронология развития стандартов скс - student2.ru

Рисунок 12 Одномодовый и многомодовый кабель.

Собственные потери оптического волокна:

Свет является электромагнитной волной. Скорость света уменьшается при распространении по прозрачным материалам по сравнению со скоростью распространения света в вакууме. Волны инфракрасного диапазона также распространяются различно по оптическому волокну. Поэтому затухание, или потери оптической мощности, должны измеряться на специфических длинах волн для каждого типа волокна. Длины волн измеряются в нанометрах (нм).

Потери оптической мощности на различных длинах волн происходят в оптическом волокне вследствие поглощения, отражения и рассеяния. Эти потери зависят от пройденного расстояния и конкретного вида волокна, его размера, рабочей частоты и показателя преломления. Величина потерь оптической мощности вследствие поглощения и рассеяния света на определенной длине волны выражается в децибелах оптической мощности на километр (дБ/км).

Волокна оптимизированы для работы на определенных длинах волн. Например, можно достичь потерь в 1 дБ/км для многомодового волокна 50/125 мкм на длине волны 1300 нм, и менее 3 дБ/км (50%-е потери мощности) для того же волокна на 850 нм. Эти два волновых региона, - 850 и 1300 нм, являются областями, наиболее часто определяемыми для рабочих характеристик оптических волокон и используются современными коммерческими приемниками и передатчиками. Кроме того, одномодовые волокна оптимизированы для работы в регионе 1550 нм.

В коаксильном кабеле чем больше частота, тем больше уменьшается амплитуда сигнала с увеличением расстояния, и это явление называется затуханием. Частота для оптического волокна постоянна до тех пор, пока она не достигнет предела диапазона рабочих частот. Таким образом, оптические потери пропорциональны только расстоянию. Такое затухание в волокне вызвано поглощением и рассеиванием световых волн на неоднородностях, вызванных химическими загрязнениями, и на молекулярной структуре материала волокна. Эти микрообъекты в волокне поглощают или рассеивают оптическое излучение, оно не попадает в ядро и теряется. Затухание в волокне специфицируется производителем для определенных длин волн: например, З дБ/км для длины волны 850 нм. Это делается потому, что потери волокна изменяются с изменением длины волны.

Потери на микроизгибах. Без специальной защиты оптическое волокно подвержено потерям оптической мощности вследствие микроизгибов. Микроизгибы - это микроскопические искажения волокна, вызываемые внешними силами, которые приводят к потере оптической мощности из ядра. Для предотвращения возникновения микроизгибов применяются различные типы защиты волокна. Волокна со ступенчатым показателем относительно более устойчивы к потерям на микроизгибах, чем волокна с градиентным показателем.

Полоса пропускания (ширина спектра) - это мера способности волокна передавать определенные объемы информации в единицу времени. Чем шире полоса, тем выше информационная емкость волокна. Полоса выражается в МГц-км.

Например, по волокну с полосой 200 МГц-км можно передавать данные с частотой 200 МГц на расстояния до 1 км или с частотой 100 МГц на расстояния до 2 км. Благодаря сравнительно большой полосе пропускания, волокна могут передавать значительные объемы информации. Одно волокно с градиентным показателем преломления может с легкостью передавать 500 миллионов бит информации в секунду. Тем не менее, для всех типов волокон существуют ограничения ширины полосы, зависящие от свойств волокна и типа используемого источника оптической мощности.

Для точного воспроизведения передаваемых по волокну данных световые импульсы должны распространяться раздельно друг от друга, имея четко различимую форму и межимпульсные промежутки. Однако лучи, несущие каждый из импульсов, проходят разными путями внутри многомодового волокна. Для волокон со ступенчатым показателем преломления лучи, проходя зигзагообразно по волокну под разными углами, достигают приемника в разное время.

Это различие во времени прибытия импульсов в точку приема приводит к тому, что импульсы на выходе линии искажаются и накладываются друг на друга. Это так называемое модальное рассеивание, или модальная дисперсия, или уширение светового импульса ограничивает возможную для передачи частоту, так как детектор не может определить, где заканчивается один импульс и начинается следующий. Разница во временах прохождения самой быстрой и самой медленной мод света, входящих в волокно в одно и то же время и проходящих 1 км, может быть всего лишь 1 -3 нс, однако такая модальная дисперсия влечет за собой ограничения по скорости в системах, работающих на больших расстояниях. Удваивание расстояния удваивает эффект дисперсии.

Модальная дисперсия часто выражается в наносекундах на километр, например, 30 нс/км. Также она может быть выражена и в частотной форме, например 200 МГц-км. Это означает, что волокно или система будут эффективно работать в пределах частот до 200 МГц, прежде чем рассеивание начнет сказываться на пропускной способности на расстояниях более одного километра. Эта же система сможет передавать сигнал с частотой 100 МГц на расстояние в два километра.

Дисперсия делает многомодовое волокно со ступенчатым показателем преломления наименее эффективным по ширине полосы среди всех трех типов волокна. Поэтому оно используется на более коротких участках и низких частотах передачи. Типичным значением ширины полосы ступенчатого волокна является 20 МГц-км.

Размеры ядра одномодового волокна малы - от 8 до 10 мкм, что позволяет проходить по волокну только одному лучу света. Так как модальная дисперсия в данном случае полностью отсутствует, полоса пропускания у такого волокна гораздо больше, чем у многомодового, что позволяет достигать рабочих частот свыше нескольких сотен гигагерц на километр (ГГц-км).

Оптические волокна обладают еще одной разновидностью дисперсии, возникающей вследствие того, что разные длины волн распространяются в среде с разной скоростью. Такую "спектральную дисперсию" можно наблюдать, когда белый свет распадается на семь цветов радуги, проходя через стеклянную призму. Волны, представляющие разные цвета, движутся в среде с разной скоростью, что приводит к различию в траекториях распространения лучей. Если бы оптический источник волоконной системы излучал свет одной частоты, спектральная дисперсия или материальная дисперсия (или хроматическая дисперсия, как ее еще часто называют) была бы устранена. В действительности, абсолютно монохроматических источников света не существует. Лазеры обладают определенным, хотя и очень небольшим, уширением спектра излучаемого света. У источников света на основе LED (полупроводниковые светодиоды) спектральный диапазон в 20 раз шире чем у лазера, и спектральная дисперсия, в свою, очередь намного выше. Дисперсия в стеклянном волокне минимальна в регионе около 1300 нм, позволяя одномодовым волокнам иметь значительную полосу на данной длине волны.

Одномодовое волокно обычно используется с лазерными источниками благодаря своей высокой спектральной чистоте. Для обеспечения эффективного функционирования таких систем требуются прецизионные коннекторы и муфты.

Благодаря своим низким потерям и высоким пропускным характеристикам, одномодовые волокна, как правило, являются наилучшим и, как правило, единственным выбором для монтажа протяженных высокоскоростных линий, таких как междугородние телекоммуникационные системы.

Между одномодовым волокном и волокном со ступенчатым показателем преломления располагаются волокна с градиентным показателем преломления. Для уменьшения эффекта модальной дисперсии лучи в таких волокнах постепенно перенаправляются назад к оси ядра. Волокна с градиентным показателем преломления имеют большую полосу, чем волокна со ступенчатым показателем преломления. По волокну с градиентным показателем преломления с полосой 600 МГц-км можно передавать сигнал с модуляцией 20 МГц на расстояние до 30 км. Стоимость такого стеклянного волокна является одной из самых низких. Малые потери мощности передаваемого сигнала плюс большая полоса позволяют использовать его для монтажа локальных сетей.

Беспроводные сети

Беспроводные компьютерные сети – это технология, позволяющая создавать вычислительные сети, полностью соответствующие стандартам для обычных проводных сетей (например, Ethernet), без использования кабельной проводки. В качестве носителя информации в таких сетях выступают радиоволны СВЧ-диапазона.

Беспроводные сети используются там, где кабельная проводка затруднена или невозможна. Сеть, развернутая в соответствии со стандартом “RadioEthernet”, представляет собой аналог обычной кабельной сети Ethernet с коллизионным механизмом доступа к среде передачи данных. Разница состоит только в характере этой среды. Radio Ethernet полностью обеспечивает все потребности беспроводной передачи данных внутри помещений.

При наружном применении RadioEthernet очень удобно использовать сети на “последней миле” взамен кабельной, то есть – для соединения между абонентом и ближайшим узлом опорной сети. При этом реальная протяженность “последней мили” может быть от нескольких сотен метров до 20-30 км и ограничена лишь наличием прямой видимости.

Wi-Fi

Wi-Fi (произносится «вай-фай» сокр. от англ. Wireless Fidelity) — стандарт на оборудование Wireless LAN.

хронология развития стандартов скс - student2.ru

Рисунок 13 Пример сети Wi-Fi

Разработан консорциумом «Wi-Fi Alliance» (en) на базе стандартов IEEE 802.11, «Wi-Fi» — торговая марка «Wi-Fi Alliance». Технологию назвали Wireless-Fidelity (дословно "Беспроводная Надежность") по аналогии с Hi-Fi.

Установка Wireless LAN рекомендуется там, где развёртывание кабельной системы невозможно или экономически нецелесообразно. Благодаря функции хендовера пользователи могут перемещаться между точками доступа по территории покрытия сети Wi-Fi без разрыва соединения.

Мобильные устройства (КПК, Смартфоны и ноутбуки), оснащённые клиентскими Wi-Fi приёмо-передающими устройствами, могут подключаться к локальной сети и получать доступ в интернет через так называемые точки доступа или хотспоты.

История

Wi-Fi был создан в 1991 NCR Corporation/AT&T (в последствии Lucent и Agere Systems) в Ньивегейн, Нидерланды. Продукты, предназначавшиеся изначально для систем кассового обслуживания, были выведены на рынок под маркой WaveLAN и обеспечивали скорость передачи данных от 1 до 2 Мбит/с. Вик Хейз (Vic Hayes) — создатель Wi-Fi — был назван «отцом Wi-Fi» и находился в команде, участвовавшей в разработке таких стандартов, как IEEE 802.11b, 802.11a и 802.11g. В 2003 Вик ушёл из Agere Systems. Agere Systems не смогла конкурировать на равных в тяжёлых рыночных условиях, несмотря на то, что её продукция занимала нишу дешевых Wi-Fi решений. 802.11abg all-in-one чипсет от Agere (кодовое имя: WARP) плохо продавался, и Agere Systems решила уйти с рынка Wi-Fi в конце 2004 года.

Wi-Fi: Как это работает

Обычно схема Wi-Fi сети содержит не менее одной точки доступа (AP, от англ. access point) и не менее одного клиента (режим "инфраструктура"). Так же возможно подключение двух клиентов в режиме точка-точка, когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров "напрямую". Точка доступа передаёт свой SSID (англ. Service Set IDentifier, Network name — идентификатор сети, сетевое имя) с помощью специальных пакетов, называемых сигнальными пакетами, передающихся каждые 100 мс. Сигнальные пакеты передаются на скорости 1 Mбит/с и обладают малым размером, поэтому они не влияют на характеристики сети. Так как 1 Mбит/с — наименьшая скорость передачи данных для Wi-Fi, то клиент, получающий сигнальные пакеты, может быть уверен, что сможет соединиться на скорости не менее, чем 1 Mбит/с. Зная параметры сети (то есть SSID), клиент может выяснить, возможно ли подключение к данной точке доступа. Программа, встроенная в Wi-Fi карту клиента, также может влиять на подключение. При попадании в зону действия двух точек доступа с идентичными SSID программа может выбирать между ними на основании данных об уровне сигнала. Стандарт Wi-Fi даёт клиенту полную свободу при выборе критериев для соединения и роуминга. В этом преимущество Wi-Fi, хотя оно означает, что один из адаптеров может выполнять эти действия гораздо лучше другого. Последние версии операционных систем содержат функцию, называемую zero configuration, которая показывает пользователю все доступные сети и позволяет переключаться между ними «на лету». Это означает, что роуминг будет полностью контролироваться операционной системой. Wi-Fi передаёт данные в эфире, поэтому он обладает свойствами, сходными с некоммутируемой ethernet-сетью, и для него могут возникать такие же проблемы, как при работе с некоммутируемыми ethernet-сетями.

Wi-Fi и телефоны сотовой связи

Некоторые считают, что Wi-Fi и подобные ему технологии со временем могут заменить сотовые сети, такие как GSM. Препятствиями для такого развития событий в ближайшем будущем являются отсутствие роуминга и возможностей аутентификации (см. 802.1x, SIM-карты и RADIUS), ограниченность частотного диапазона и сильно ограниченный радиус действия Wi-Fi. Более правильным выглядит сравнение Wi-Fi с другими стандартами сотовых сетей, таких как UMTS или CDMA. Тем не менее, Wi-Fi идеален для использования VoIP в корпоративных сетях или в среде SOHO. Первые образцы оборудования были доступны уже в начале 90-х, однако не поступали в коммерческую эксплуатацию до 2005 года. Тогда компании Zyxel, UT Starcomm, Samsung, Hitachi и многие другие представили на рынок VoIP Wi-Fi телефоны по «разумным» ценам. В 2005 ADSL ISP провайдеры начали предоставлять услуги VoIP своим клиентам (например нидерландский ISP XS4All). Когда звонки с помощью VoIP стали очень дешёвыми, а зачастую вообще бесплатными, провайдеры, способные предоставлять услуги VoIP, получили возможность открыть новый рынок — услуг VoIP. GSM телефоны с интегрированной поддержкой возможностей Wi-Fi и VoIP начали выводиться на рынок, и потенциально они могут заменить проводные телефоны. В настоящий момент непосредственное сравнение Wi-Fi и сотовых сетей нецелесообразно. Телефоны, использующие только Wi-Fi имеют очень ограниченный радиус действия, поэтому развёртывание таких сетей обходится очень дорого. Тем не менее, развёртывание таких сетей может быть наилучшим решением для локального использования, например, в корпоративных сетях. Однако устройства, поддерживающие несколько стандартов, могут занять значительную долю рынка.

Коммерческое использование Wi-Fi

Коммерческий доступ к сервисам на основе Wi-Fi предоставляется в таких местах, как интернет-кафе, аэропорты и кафе по всему миру (обычно эти места называют Wi-Fi-кафе), однако их покрытие можно считать точечным по сравнению с сотовыми сетями:

· Ozone и OzoneParis Во Франции. В сентябре 2003 года Ozone начала развёртывание сети OzoneParis через The City of Lights. Конечная цель — создание централизованной сети Wi-Fi, полностью покрывающей Париж. Основной принцип Ozone Pervasive Network заключается в том, что это сеть национального масштаба.

· WiSE Technologies предоставляет коммерческий доступ в аэропортах, университетах, и независимых кафе на территории США;

· T-Mobile обеспечивает работу хотспотов для сети Starbucks в США и Великобритании, а так же более 7500 хотспотов в Германии;

· Pacific Century Cyberworks обеспечивает доступ в магазинах Pacific Coffee в Гонконге;

· Columbia Rural Electric Association пытается развернуть сеть 2.4 GHz Wi-Fi на территории площадью 9,500 км², расположенной между округами Уалла-Уалла и Колумбия в штате Вашингтон и Юматилла, Орегон; В список других крупных сетей в США также входят: Boingo, Wayport и iPass;

· Sify, Индийский Интернет-провайдер, установил 120 точек доступа в Бангалоре, в отелях, галереях и правительственных учреждениях.

· Vex имеет большую сеть хотспото

Наши рекомендации