Задачи к практическому занятию № 2
Для совместной работы на доске
Задача 2.1
Результаты многократного измерения длины стержня (мм) следующие:
18,309 | 18,312 | 18,304 | 18,309 | 18,308 |
18,307 | 18,309 | 18,306 | 18,313 | 18,303 |
Оценить истинное значение длины стержня, исходя из предположения нормальности распределения результатов измерений.
Решение задачи 2.1
За оценку истинного значения измеряемой величины принимается математическое ожидание результатов наблюдений:
Для нормального распределения математическим ожиданием и, соответственно, оценкой истинного значения является среднее арифметическое из результатов отдельных наблюдений xi,
Истинное значение длины стержня 18,308 мм.
Задача 2.2
Результаты многократного измерения длины стержня (мм) следующие:
18,309 | 18,312 | 18,304 | 18,309 | 18,308 |
18,307 | 18,309 | 18,306 | 18,313 | 18,303 |
Найти точечную оценку СКО длины стержня, исходя из предположения нормальности распределения результатов измерений.
Решение задачи 2.2
Точечная оценка СКО результата серии измерений определяется по формуле:
где Vi – отклонение отдельных измерений от математического ожидания серии из n измерений.
№ наблюдения | Результат наблюдения; li, мм | Отклонение наблюдения от математического ожидания; Vi, мм | Квадрат отклонения наблюдения от мате–матического ожидания; Vi2, 10–6 мм2 |
18,309 | 0,001 | ||
18,307 | 0,001 | ||
18,312 | 0,004 | ||
18,309 | 0,001 | ||
18,304 | 0,004 | ||
18,306 | 0,002 | ||
18,309 | 0,001 | ||
18,313 | 0,005 | ||
18,308 | 0,000 | ||
18,303 | 0,005 | ||
Σ | 183,08 |
Точечная оценка СКО длины стержня 0,001 мм.
Задача 2.3
Результаты многократного измерения длины стержня (мм) следующие:
18,309 | 18,312 | 18,304 | 18,309 | 18,308 |
18,307 | 18,309 | 18,306 | 18,313 | 18,303 |
Построить гистограмму распределения.
Решение задачи 2.3
Для отображения n полученных показаний СИ в виде гистограммы область численных значений между наименьшим и наибольшим показаниями (размах) R = Lmax – Lmin делят на интервалы одинаковой ширины ΔL и определяют число показаний nk, попавших в каждый из полученных интервалов. Полученные результаты изображают графически, откладывая по оси абсцисс полученные максимальное и минимальное показания с обозначением границ интервалов между ними, а по оси ординат – величину nk/(nΔL). Построив над каждым из интервалов прямоугольники, основанием которых является ширина интервалов, а высотой – nk/(nΔL), получим гистограмму, дающую представление о плотности распределения вероятности полученных показаний в данном эксперименте. Относительную частоту попаданий nk/n можно условно приравнять к вероятности попадания в конкретный интервал, а высоту прямоугольника считать равной эмпирической плотности вероятности рk = nk/(nΔL).
Диапазон | Кол–во результатов |
18,305 – 18,305] | |
(18,305 – 18,307] | |
(18,307 – 18,309] | |
(18,309 – 18,311] | |
(18,311 – 18,313 |
Гистограмма распределения
Задача 2.4
Результаты многократного измерения длины стержня (мм) следующие:
18,309 | 18,312 | 18,304 | 18,309 | 18,308 |
18,307 | 18,309 | 18,306 | 18,313 | 18,303 |
Построить полигон распределения.
Решение задачи 2.4
Полигон представляет собой ломаную кривую, соединяющую середины верхних оснований столбцов гистограммы. Полученная таким образом кусочнолинейная аппроксимация более наглядно, чем гистограмма, отражает форму искомой кривой распределения.
Полигон распределения
Задача 2.5
При измерении размера детали были следующие источники погрешности измерений: средства измерений ΔСИ = ± 0,05 мм, отсчета оператора ΔОП = ± 0,01 мм. Определите реальную погрешность измерения Δ.
Решение задачи 2.5
Реальная погрешность измерения Δ складывается из погрешностей средства измерения ΔСИ и отсчета оператора ΔОП.
Реальная погрешность измерения Δ = ± 0,06 мм.
Для самостоятельной работы
Задача 2.6
Даны результаты многократных измерений диаметра детали Di [мм].
5,26 | 5,28 | 5,25 | 5,28 | 5,28 |
5,32 | 5,31 | 5,28 | 5,27 | 5,27 |
5,28 | 5,26 | 5,24 | 5,26 | 5,28 |
5,25 | 5,30 | 5,26 | 5,24 | 5,23 |
Предварительно оценить правдоподобность допущения о том, что полученные показания подчиняются нормальному закону распределения вероятности по виду гистограммы, построенной на основании полученных экспериментальных данных. Оценить истинное значение и найти точечную оценку СКО этого диаметра, исходя из предположения нормальности распределения результатов измерений.
Ответ: Diср=5,27мм; SD=0,02317мм.
Задача 2.7
При многократном измерении температуры в производственном помещении получены следующие результаты в градусах Цельсия:
20,24°С | 20,13°С | 20,12°С | 20,20°С | 20,16°С |
20,17°С | 20,19°С | 20,21°С | 20,15°С | 20,23°С |
Оценить правдоподобность допущения о том, что полученные показания подчиняются нормальному закону распределения вероятности, оценить истинное значение и найти точечную оценку СКО температуры, исходя из предположения нормальности распределения результатов измерений.
Ответ: Тср=20,18°С; SТ=0,013°С.
Задача 2.8
При многократном измерении динамометром усилия получены следующие результаты, Н:
29,76 | 29,74 | 29,75 | 29,78 | 29,78 |
29,73 | 29,81 | 29,78 | 29,77 | 29,77 |
29,78 | 29,76 | 29,74 | 29,76 | 29,78 |
29,75 | 29,80 | 29,76 | 29,82 | 29,78 |
Оценить правдоподобность допущения о том, что полученные показания подчиняются нормальному закону распределения вероятности, оценить истинное значение и найти точечную оценку СКО усилия, исходя из предположения нормальности распределения результатов измерений.
Ответ: Fср=29,77H; SF=0,0108Н.
Задача 2.9
При испытании материала на растяжение измерением получены значения силы F = (903 ± 12) Н и площади поперечного сечения стержня S = (314 ± 4) м2. Укажите предельные границы для истинного значения напряжения, если предел прочности определяется по формуле σ = 4F/S. Значение погрешности округляется до одной значащей цифры.
Ответ: σ = (11,503±0,006) Н/м2.