Дискретные случайные величины. 1). Независимые дискретные случайные величины X1, X2, .X21 принимают только значения 1 и 4
1). Независимые дискретные случайные величины X1, X2,….X21 принимают только значения 1 и 4. Найти наиболее вероятное значение суммы S=X1+X2+…+X21, если Р(X1=4)=3/5.
Решение.
2) Независимые дискретные случайные величины X1, X2,….X18 принимают только значения 2 и 4. Найти P(X1+X2,….+X18=42), если P(X1=4)=0.1
Решение.
3). Независимые дискретные случайные величины Х,Y принимают только целые значения: Х от 1 до 13 с вероятностью 1/13, У от 1 до 20 с вероятностью 1/20. Найти вероятность Р(Х+У=26)
Решение.
4). Случайная величина Х принимает только целые значения 1,2,…29. При этом вероятности возможных значений Х пропорциональны значениям, Р(Х=к)=ск. Найти с и Р(X>3).
Решение.
5). Независимые случайные величины Х1,…Х4 принимают только целые значения от 0 до 6 с вероятностью 1/7. Найти Р(Х1+…+Х4=2)
Решение.
6). Независимые случайные величины Х, Y, Z принимают только целые значения: Х – от 0 до 7 с вероятностью 1/8, У – от 0 до 9 с вероятностью 1/10 и Z – от 0 до 11 с вероятностью 1/12. Найти P(X+Y+Z=5).
Решение.
7). Независимые случайные величины Х, У принимают только целые значения: Х от 1 до 15 с вероятностью 1\15, У – от 1 до 5 с вероятностью 1/5. Найти Р(X<Y)
Решение.
8). Независимые случайные величины Х,У принимают только целые значения. Х – от 1 до 13 с вероятностью 1/13, У от 1 до 16 с вероятностью 1/16. Найти Р(X+Y<6).
Решение.
9). Независимые случайные величины Х,У принимают только целые значения: Х – от -7 до 7 с вероятностью 1/15, У – от -6 до 6 с вероятностью 1/13. Найти Р(ХУ=0)
Решение.
10). Независимые случайные величины Х,У принимают только целые значения: Х – от -8 до 6 с вероятностью 1/15, У – от -5 до 9 с вероятностью 1/15. Найти Р(ХУ>0)
Решение.
11) Независимые случайные величины Х,У принимают только целые значения: Х – от -7 до 6 с вероятностью 1/14, У – от -6 до 9 с вероятностью 1/16. Найти Р(ХУ<0)
Решение.
12). Независимые случайные величины Х1,…Х9 принимают только целые значения от 0 до 3 с вероятностью ¼. Найти Р(Х1Х2…Х9=0)
Решение.
13). Независимые случайные величины X,Y,Z принимают только целые значения. Х – от 1 до 12 с вероятностью 1/12, У – от 1 до 8 с вероятностью 1/8, Z – от 1 до 6 с вероятностью 1/6. Найти вероятность того что X, Y, Z примут разные значения.
Решение.
14). Независимые случайные величины X,Y,Z принимают только целые значения. Х – от 1 до 10 с вероятностью 1/10, У – от 1 до 9 с вероятностью 1/9, Z – от 1 до 7 с вероятностью 1/7. Найти Р(X<Y<Z)
Решение.
15). Независимые случайные величины Х1,…Хn принимают только целые значения 1, 2,…7. с вероятностью 1/7. Найти вероятность того, что наибольшее из чисел Х1,…Хn будет равно 6.
Решение.
16). Независимые случайные величины Х1…Х40 принимают только положительные ли отрицательные значения. Найти вероятность того, что произведение Y=X1X2…X40>0, если Р(Х1>0)=98
Решение.
17). Распределение дискретной с.в. Х задано таблицей.
Найти m=M[X]и P(X<m).
Решение.
18). Дискретная с.в. Х принимает только целые значения 3,4,7,8,10 с вероятностью 1/5. Найти m=M[X] и P(X<m).
Решение.
19). Распределение дискретной с.в. Х задано таблицей.
Найти дисперсию D[X].
Решение.
20). Дискретные с.в. Х1, Х2…Х9 распределены по одному закону заданному таблицей. Найти
Решение.
21). Независимые с.в. X1, X2,…X6 принимают значения -8,-7,….,11,12 с вероятностью 1/21. Найти M[X1X2,…X6].
Решение.
22. Распределение с.в Х задано таблицей.
Найти m=M[X], σ=σ[X] и P(|X-m|<σ)
Решение.
23). Дано: M[X]=8, M[Y]=6, Cov[X,Y]=7. Найти M[XY].
Решение.
24). Дано: D[X]=4, D[Y]=5, Cov[X,y]=3, M[X]=70, M[Y]=30. Найти M[X-Y] и D[X-Y].
Решение.
25). Для независимых с.в. Х1…Х6 известно, что M[Xi]=0, D[Xi]=2.9, i=1,..6. Найти D[X1…X6]
Решение.
26). Для независимых случайных величин Х1,Х2,Х3 известно, что М[X]=3, M[Y]=1, D[Xi]=1.1, i=1,2,3. Найти D[Х1Х2Х3].
Решение.
27). Для независимых с.в. Х У известно, что M[X]=3, M[Y]=1,D[X]=8, D[Y]=4. Найти D[XY].
Решение.
28). Независимые случайные величины Х1,…,Х20 могут принимать только значения 0 и 1. При этом P(Xi=0)=0.8, i=1,…20. Найти M[(X1+…+X20)2].
Решение.
29). Независимые дискретные с.в. Х и У могут принимать только значения 0 и 1. При этом Р(Х=0)=0,2, Р(У=0)=0,1 Найти М[(X+Y)2].
Решение.
30). Независимые дискретные с.в. Х и У могут принимать только значения 0 и 1. При этом Р(Х=0)=0,2, Р(У=0)=0,6 Найти М[(X-Y)2].
Решение.
31). Независимые случайные величины Х1,…Х4 могут принимать только значения 0 и 1. При этом P(Xi=0)=0.6, i=1,…4. Найти M[2x1-…x4]
Решение.
32). Независимые дискретные случайные величины Х и У могут принимать только значения 0 и 1. При этом Р(Х=0)=0,6, Р(У=0)=0,4. Найти M[2x+y]
Решение.
33). Независимые дискретные случайные величины Х и У могут принимать только значения 0 и 1. При этом Р(Х=0)=0,4, Р(У=0)=0,8. Найти M[4x-y]
Решение.
34). Вероятность выигрыша 3 рублей в одной партии равна 2/5. Вероятность проигрыша 2 рублей равна 3/5. Найти дисперсию капитала игрока после 6 партий.
Решение.
35). С.в. Х и У принимают только значения 0 и 1. Найти дисперсию D[X-Y], если Р(Х=1)=Р(У=1)=0,1, а коэффициент корреляции Х и У равен 0,2.
Решение.
36). Дано: M[X]=M[Y]=8, D[X]=D[Y]=80. Коэффициент корреляции Х и У равен 0,1. Найти M[(X+Y)2]
Решение.
37). Для случайной величины Х известно, что M[X]=5, M[|X|]=8, D[|X|]=70. Найти D[X].
Решение.
38). Производится 2560 независимых испытаний, состоящих в том, что одновременно подбрасываются 6 монет. Пусть Х – число испытаний, в которых выпало 3 герба. Найти M[X].
Решение.
39). Производится 13 независимых испытаний с вероятностью успеха 0,8 в каждом испытании. Пусть Х – число успехов в испытаниях с номерами 1,2,…,9; У – число успехов в испытаниях с номерами 5,6,…13. Найти дисперсию D[X+3Y]/
Решение.
40). Производится 10 независимых испытаний, в каждом из которых подбрасываются 4 игральные кости. Пусть Х – число испытаний, в которых все выпавшие цифры оказались ≥4. Найти дисперсию D[X].
Решение.
41). В спортивной лотереи каждую неделю на 100 билетов разыгрывается 11 палаток и 11 рюкзаков. Турист решил каждую неделю покупать по одному билету до тех пор, пока он не выиграет палатку и рюкзак. Найти среднее время реализации данного решения (ед времени – неделя)
Решение.
42). Тоже самое.
43). В серии независимых испытаний, которые проводятся с частотой одно испытание в ед времени, вероятность наступления события А в одном испытании равна 1/10. Пусть Т – время ожидания наступления события А 19 раз (за все время ожидания). Найти M[T] и D[T].
Решение.
44)Случайная составляющая выручки равна 5Х, где Х – биномиальная случайная величина с параметрами n=200 и p=1/2. Случайная составляющая затрат имеет вид 30У, где У – пуассоновская с.в. Найти дисперсию прибыли, считая что Х и У – независимы, а M[Y]=4
Решение.
45). Для пуассоновской с.в. Х отношение Р(Х-14)/Р(Х-13)=10. Найти M[X]
Решение.
46). С.в. Х1…Х100 распределены по биномиальному закону с параметрами n=3 и p=3/5. Найти M[X12+….X1002]
Решение.
47). С.в. Х1…Х14 распределены по геометрическому закону, M[X1]=…=M[X14]=2. Найти М[X12+…+X142].
Решение.
48). С.в. Х1…Х8 распределены по закону Пуассона, М[X1]=…M[X8]=10. Найти М[X12+…+X82].
Решение.
50). С.в. Х и У распределены по закону Пуассона. Найти дисперсию D[3X+5Y] если M[X]=M[Y]=100., а коэффициент корреляции Х и У равен 0,8
Решение.
52). Независимые с.в Х1…Х11 распределены по закону Пуассона. Найти M[(X1+…+X11)2] если M[X1]=…=M[X11]=1
Решение.
53). Независимые с.в Х1…Х6 распределены по геометрическому закону. Найти M[(X1+…+X6)2] если M[X1]=…=M[X6]=4
Решение.
Непрерывные случайные величины.
1). Случайная величина Х имеет функцию распределения F(x). С.в. Y=4X+9 имеет функцию распределения G(x). Выразить G(x) через F(x)/
Решение.
2). Случайная величина Х имеет непрерывную функцию распределения F(x). С.в. Y=8-9X имеет функцию распределения G(x). Выразить G(x) через F(x).
Решение.
3). Распределение с.в. Х задано плотностью вероятности f(x). Найти плотность вероятности с.в. Y=2X+7.
Решение.
4). С.в. Х равномерно распределена на отрезка [-9,6]. Найти P(1/х>4).
Решение.
5). С.в. Х равномерно распределена на отрезке [-9,10]. Найти Р(Х2>9)
Решение.
6). С.в. Х, У независимы и равномерно распределены на отрезках: Х – на [0,3], Y – [0,2]. Найти Р(X<Y).
Решение.
7). С.в. Х равномерно распределена на отрезке [-1,1]. Найти М[X5/13]
Решение.
8). С.в. Х равномерно распределена на отрезке [-1,1]. Найти D[X5/13]/
Решение.
9). С.в. Х равномерно распределена на отрезке [0,1]. Найти D[13X5/8].
Решение.
10). С.в. Х равномерно распределена на отрезке [1,9]. Найти D[24X+11]/
Решение.
11). С.в. Х, У независимы и равномерно распределены на отрезке [9,10]. Найти М[12(X-Y)2].
Решение.
12). С.в. Х равномерно распределена на отрезке [1,8]. Найти вероятность .
Решение.
13). С.в. X1, X2…X4 независимы и распределены по показательному закону. Найти если М(Х1)=….=М(Х4)=3
Решение.
14).С.в. Х распределена по показательному закону. Найти М[(X+9)2], если D[X]=64
Решение.
15). С.в. Х распределена по показательному закону. Найти lnP(X<9), если D[X]=100.
Решение.
16). С.в. Х распределена по показательному закону. Найти Р(18<X<36), если M[X]=9/ln2.
Решение.
17). Функция плотности вероятности с.в. Х имеет вид f(x)=0, x<10; C/x3, x>_10.
Найти С и Р(Х<11).
Решение.
18). Функция плотности вероятности с.в. Х имеет вид f(x)=0, x<12; C/x4, x>_12.
Найти С и М[Х].
Решение.
19). Для нормальной с.в. Х с М[X]=11 и D[X]=9 найти Р(X>8.3).
Решение.
20). Для нормальной с.в. Х с М[X]=28 и D[X]=64 найти Р(X<26.4).
Решение
21). Для нормальной с.в. Х с М[X]=7 и D[X]=4 найти Р(5.8<X<9.4).
Решение.
22). Независимые нормальные случайные величины Х1, Х2, …Х8 имеют одинаковые математические ожидания М[X1]=…=M[X8] = 70. Найти вероятность того, что из всех Xi только 3 величины будут больше 70.
Решение.
23). Для нормальной с.в. Х M[X]=2.1 и D[X]=9 найти P(|X|>1.2)
Решение.
24). Для нормальной случайной величины Х известно, что M[X]=24.3 и P(X<39)=0.98214. Найти D[X].
Решение.
25). Для нормальной случайной величины Х известно, что D[X]=49 и P(X<40)=0.81594. Найти m=М[X].
Решение.
26). Математическое ожидание и дисперсия независимых нормальных случайных величин Х,Y,Z,U равны 1. Найти P(X-Y+Z+U)<1.
Решение.
27). Для независимых нормальных случайных величин X, Y известны их мат. Ожидания и дисперсии: M[X]=15, M[Y]=19.9, D[X]=5, D[Y]=44. Найти Р(X<Y).
Решение.
28). Независимые нормальные случайные величины X1…X25 имею одинаковые параметры: M[Xi]=2, D[Xi]=σ2, i=1…25. Для S=X1+…+X25 найти P(|S-50|<13/2* σ).
Решение.