Равномерное распределение.

Непрерывная случайная величина считается равномерно распределенной, если ее плотность вероятности имеет вид:

Равномерное распределение. - student2.ru

Математическое ожидание случайной величины, имеющей равномерное распределение:

Равномерное распределение. - student2.ru

Дисперсия может быть вычислена следующим образом: D(X)=

Равномерное распределение. - student2.ru

Среднее квадратичное отклонение будет иметь вид:

Равномерное распределение. - student2.ru

.

Статистические распределения^

Распределение Коши

Распределе́ние Коши́ в теории вероятностей— класс абсолютно непрерывных распределений. Случайная величина, имеющая распределение Коши, является стандартным примером величины, не имеющей математического ожидания и дисперсии. Плотность имеет вид:

Равномерное распределение. - student2.ru

где μ - параметр сдвига (-∞ ≤ μ ≤ +∞ ), а σ - масштабный параметр (0<σ).

Распределение Коши имеет следующую нотацию: X ~ Cau(μ, σ), где:

X - это случайная величина, выбранная из распределения Коши Cau;

μ - параметр сдвига (-∞ ≤ μ ≤ +∞ );

σ - масштабный параметр (0<σ).

Распределение Стьюдента

Важным распределением в статистике является распределение Стьюдента.

Распределе́ние Стью́дента в теории вероятностей — это чаще всего однопараметрическое семейство абсолютно непрерывных распределений. Однако, можно считать его и трёхпараметрическим распределением, которое задаётся функцией плотности распределения:

Равномерное распределение. - student2.ru

где Г - гамма-функция Эйлера, ν - это параметр формы (ν>0), μ - параметр сдвига (-∞ ≤ μ ≤ +∞ ), σ - масштабный параметр (0<σ).

t - это случайная величина, выбранная из распределения Стьюдента Stt;

ν - это параметр формы (ν>0)

μ - параметр сдвига (-∞ ≤ μ ≤ +∞ );

σ - масштабный параметр (0<σ).

Распределение Лапласа

Еще одним интересным непрерывным распределением является распределение Лапласа (двойное экспоненциальное).

Распределе́ние Лапла́са (двойно́е экспоненциа́льное) — в теории вероятностей это непрерывное распределение случайной величины, при котором плотность вероятности есть:

Равномерное распределение. - student2.ru

где α - параметр сдвига (-∞ ≤ α ≤ +∞ ), β - параметр масштаба (0<β).

X - это случайная величина;

α - параметр сдвига (-∞ ≤ α ≤ +∞ );

β - параметр масштаба (0<β).

Распределение Пуассона

Следующим станет распределение Пуассона.

Распределение Пуассона моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга. Плотность имеет вид:

Равномерное распределение. - student2.ru

где k! - факториал, λ - параметр положения (0 < λ).

Его нотация выглядит следующим образом: k ~ Pois(λ), где:

k - это случайная величина;

λ - параметр положения (0 < λ).

Нормальное распределение.

Нормальное распределение часто встречается в реальных исследованиях. Оно удобно для компьютерной обработки. Использованию нормального распределения для приближенного описания случайных величин не препятствует то обстоятельство, что эти величины обычно могут принимать значения только из какого-то ограниченного интервала (скажем, размер изделия должен быть больше нуля и меньше километра), а нормальное распределение не сосредоточено целиком ни на каком интервале. Однако, вероятность больших отклонений нормальной случайной величины от среднего значения настолько мала, что ее практически можно считать равной нулю.

Наши рекомендации