Ранги Объекты для ранжирования
(их наименования)
4 А
15 В
1 С
------------ -------------
3 К
Указание в скобках слева значения рангов — результат работы опрашиваемого. В опросном листе обозначено лишь место (оставлена линейка) для приписывания ранга каждому объекту. Важно иметь в виду, что при обработке данных шкала в цифровом выражении может быть "перевернута" в обратном порядке, т. е. последнему, низшему рангу можно приписать наименьшее числовое значение — 1, а первому — наибольшее. Тогда последовательность 1, 2,... и т. д. будет соответствовать возрастанию значимости объектов.
Полезно не забывать о том, что численность объектов для ранжирования не может быть слишком большой, скажем — 15. В противном случае данные ранжирования крайне неустойчивы. Кроме того, в любом варианте более устойчивы первые и последние ранги (при' повторных опросах опытных групп они обычно приписываются тем же объектам), а срединная зона, как правило, менее устойчива. Поэтому для повышения надежности данных ранжирования следует после проведения пробы на повторный опрос небольшой группы испытуемых (микромодель будущей выборочной совокупности) объединить в один ранг те из них, которые обнаружат наибольшую неустойчивость.
Предположим, что после второго замера произошли сдвиги рангов: 1—2, 3—5, 6—10, 11—13 и 14—15. Иными словами, многие из тех, кто, например, первоначально приписывал данному объекту 6-й ранг, во втором замере приписали ему 7-й, 8-й, 9-й или даже 10-й. Определив неустойчивые области, мы можем в основном исследовании, не изменяя инструкции для ранжирования, при анализе данных преобразовать 15-ранговую шкалу в 5-ранговую, как показано на схеме, т. е. обеспечить большую устойчивость и надежность данных ранжирования (Таблица 3).
Таблица 3. Объединение неустойчивых рангов по итогам двух последовательных замеров
Исходные данные | 67 8 9 10 | 11 12 13 | |||
Объединенные ранги |
Помимо того, что оценка уровня устойчивости итогов ранжирования — способ повышения надежности шкалы, это к тому же и показатель содержательного характера. Объекты, в отношении которых опрашиваемые не уверены (ранги таких объектов смещаются), по-видимому, обладают для них меньшей субъективной значимостью, выпадают из сферы повседневных интересов.
Нередко приходится ранжировать множество объектов, существенно больше 15. Объединение рангов здесь также помогает повысить устойчивость, но одновременно резко снижает чувствительность шкалы. В таком случае можно прибегнуть к несколько более трудоемкой для анализа, но более простой для респондента и более надежной процедуре ранжирования методом парных сравнений
. Ранжирование состоит в том, что предлагается попарно сопоставить предпочтительность объектов (пусть очень обширного списка) путем всех возможных их парных комбинаций.
Допустим, что у нас имеется 25 кандидатов, участвующих в выборах, ранжировать которых задача психологически почти невыполнимая. Тогда при массовом опросе накануне выборов (во время самих выборов избиратель просто голосует "да—нет" в отношении каждого кандидата) предложим следующее задание: "Из всех перечисленных попарно кандидатов в каждой из пар выберите того, который кажется Вам более предпочтительным из данной пары. Не пропускайте ни одной строчки. Предпочитаемого кандидата обведите в кружок" (Таблица 4).
Поскольку объекты А и Е имеют равное число выборов (по 1), им приписывается одинаковый ранг, а так как число перестановок оказывается весьма большим, то одинаковые значения получат несколько объектов. Доказано, что результаты такого ранжирования весьма устойчивы.[4]
Таблица 4. Построение ранговой шкалы способом попарного сравнения ранжируемых объектов
Предложены пары | Сделаны выборы | Отсюда следует ранговый порядок объектов |
А - - - В А - - - С А - - - D A - - - E B - - - C B - - - D B - - - E D - - - C D - - - E и так далее | A ---- B A ---- C A ----D A ---- E B ---- C B ---- D B ---- E D ---- C D ---- E | Ранг объекты 1 – B (4 выбора) 2 – D (3 выбора) 3 - A, E (по 1 выбору) 4 – С (ни одного выбора) |
Операции с числами. Прежде всего, следует помнить, что интервалы в шкале не равны, поэтому числа обозначают лишь порядок следования признаков. И операции с числами — это операции с рангами, но не с количественным выражением свойств в каждом пункте.
1. Числа поддаются монотонным преобразованиям: их можно заменить другими с сохранением прежнего порядка (именно поэтому шкалы данного типа называют также порядковыми). Так, вместо ранжирования от 1 до 5 можно упорядочить тот же ряд в числах от 2 до 10 или от (—1) до (+1). Отношения между рангами останутся неизменными:
1 2 3 4 5
2 4 6 8 10
-1 -0,5 0 0,5 1
Это свойство важно в тех случаях, когда данные, измеренные шкалами с различным числом интервалов, приходится приводить к "общему знаменателю", т. е. выражать в одной шкале с постоянной величиной заданных интервалов.
2. Суммарные оценки по ряду упорядоченных номинальных шкал — хороший способ измерять одно и то же свойство по набору различных индикаторов. Такое суммирование, предложенное Лайкертом, получило название "кафетерий" ("кафетерий" — это как бы набор блюд в меню с подсчетом общей стоимости обеда).
Рассмотрим пример суммирования оценок по шкале, измеряющей отношение женщин к детям. Опрашиваемых просят указать вариант ответа на каждое суждение, расположенное по вертикали (Таблица 5).
Таблица 5. Построение упорядоченной номинальной шкалы путем суммирования оценок из нескольких составляющих («кафетерий» типа шкалы Лайкерта)
Суждение об отношении к родителям | Совершенно согласна | Согласна | Трудно сказать | Не согласна | Совершенно не согласна | |
«+» « - » | Желание иметь детей Нежелание иметь детей | Оценки принятия суждений «+» | ||||
(5) | (4) | (3) | (2) | (1) | ||
Оценки принятия суждений « - » | ||||||
(1) | (2) | (3) | (4) | (5) | ||
+(1) +(2) -(3) -(4) +(5) -(6) -(7) -(8) +(9) +(10) | Дети способствуют сближению родителей Приятно наблюдать за играми детей Дети всегда отнимают у нас какую-то важную часть жизни Мать, имеющая ребенка, упускает возможность общеться с друзьями В общем, иметь детей приятнее, чем их не иметь Часто трудно сдерживаться в обращении с детьми Присмотр за детьми требует от меня слишком много усилий Если бы позволили условия, мы отправили бы детей в интернат Когда возникают неприятности, дети – это утешение Если бы я могла начать жизнь заново, я непременно обзавелась бы детьми | v v | v v | v v | v | v v v |
Прежде чем суммировать итоговый балл, следует оценить порядок всех пунктов десяти шкал, составляющих "кафетерий". Очевидно, что пункты 1, 2, 5, 9 и 10 выражают положительное отношение к детям, а пункты 3, 4, в, 7, 8— отрицательное. Важно, чтобы число позитивных и негативных суждений было одинаковым, или, как в данном случае, различалось не более, чем на 1/10.Тогда для первого ряда ответов "совершенно согласна" оценивается баллом "5" и "совершенно не согласна" — баллом "1", а для второго ряда — в обратном порядке.
Общая оценка для нашего примера складывается из баллов по строкам.
3. Для работы с материалом, собранным по упорядоченной шкале, можно использовать, помимо модальных показателей, поиск средней тенденпии с помощью медианы (Me), которая делит ранжированный ряд пополам. Медиана применяется для обнаружения порогов на шкале: справа и слева от нее располагаются признаки, тяготеющие к противоположным полюсам.
4. Наиболее сильный показатель для таких шкал — корреляция рангов (по Спирмену — р или по Кендаллу — R). Ранговые корреляции указывают на наличие или отсутствие функциональных связей в двух рядах признаков, измеренных упорядоченными номинальными шкалами.
Если определена единица измерения, с помощью которой фиксируется анализируемый признак (показатель), то используется интервальная (метрическая) шкала. Интервальные шкалы в отличие от номинальных позволяют между пунктами шкал устанавливать отношения, которые не просто окружают понятие «больше-меньше», но позволяют фиксировать величину интервала. Интервальная шкала представляет полностью упорядоченный ряд равных (или неравных) интервалов, которые полностью • закрывают исследовательское поле значений признака (показателя). Характерная особенность этого типа шкал — произвольно установленное начало отсчета. Интервальными являются, напр., шкалы, с помощью которых изучаются возраст, заработная плата или доход респондента, стаж его работы на данном предприятии или по данной специальности. Вариант псевдошкалы с равными интервалами — «термометр общественного мнения». В этой шкале, имеющей 100 делений, крайние точки (100° и 0°) словесно интерпретируются. Напр.: «Если Вы абсолютно согласны с приведенным суждением, то обозначьте свое мнение на термометре как 100°», «Если Вы полностью не согласны с данным суждением, то укажите 0°». Однако нет оснований полагать, что лица, отметившие по термометру 35° и 45°, столь же отличаются в своих оценках, как отметившие 45° и 52°. Интервал в 7° — чисто номинальный, т. к. одни люди обладают высокой способностью дифференцировать свои оценки, другие — вовсе не различают нюансы. Поэтому данная шкала измеряет не что иное, как те же ранги, что и порядковая шкала, каковой она, в сущности, и 'является.
В отличие от "термометра" общественного мнения шкалы Тёрстоуна имеют веские основания равенства интервалов. Луи Тёрструн исходил из верной предпосылки, что психологическая установка человека на социальные объекты содержит эмоциональное отношение. Поэтому задача измерения сводится к тому, чтобы найти степень позитивной или негативной напряженности такого отношения. Процедура конструирования шкалы равных интервалов разрабатывалась Тёрстоуном по аналогии с процедурами поиска психофизиологических порогов восприятия.
Представим, что перед нами множество предметов одинакового внешнего вида, но незначительно отличающихся по весу. Перебирая предметы и взвешивая их поочередно на руке, определим минимальную величину, которая ощущается как разница двух близких весов. Это и есть интервал порога восприятия тяжести. Аналогичным образом строится процедура поиска субъективного порога различения оценочных суждений в шкале Тёрстоуна.
Разработка шкалы производится в несколько этапов.
(1) Вначале придумывается множество суждений позитивного и негативного характера, каждое из которых выражает отношение к некоторому объекту, явлению, социальной проблеме и т. п. в зависимости от поставленной задачи. Например, это могут быть суждения, выражающие отношение к соблюдению законности: "Законы следует соблюдать во всех случаях"; "Бывают обстоятельства, когда нарушение определенного законодательного положения допустимо"; "Если бы наказания за несоблюдение законов были более строгими, нарушений бы не было"; "Я не очень беспокоюсь о нарушении закона, если никто об этом не сможет узнать" и т. д.
Суждения должны быть вполне однозначны и понятны, а главное, сформулированы так, чтобы с ними не смогли согласиться люди, придерживающиеся прямо противоположных взглядов. Начальная численность таких суждений ориентировочно около 30. Для их формулировки можно привлечь представителей потенциальной аудитории опроса.
(2) Суждения, записанные на отдельные карточки, предлагаются "арбитрам", в качестве каковых выступают случайным образом отобранные представители опрашиваемой аудитории. Численность судей — около 50 человек.
(3) Этим арбитрам предлагается рассортировать все суждения одно за другим, последовательно в 11 групп, обозначенных буквами от А до Л. Возле картонки с буквой "А" надо поместить суждения, в которых, по мнению арбитра, выражено максимально положительное отношение к данному объекту или явлению, а возле картонки с буквой "Л" — максимально негативное. Возле картонки с буквой "Е" должны помещаться суждения нейтрального, по мнению арбитра, характера, а остальные — в зависимости от их содержания в промежутках от "А" до "Е" и от "Е" до "Л". Судей предупреждают, что не надо стараться распределить суждения по всем группам поровну, но только в зависимости от их смысла.
(4) После окончания сортировки начинается тщательный анализ, с тем чтобы установить: (а) степень согласованности судейских решений и (б) "цену" каждого суждения на шкале в 11 интервалов (эта шкала найдена оптимальной).
(5) В итоговую шкалу отбираются суждения, получившие наиболее согласованные оценки. Например, если имеются три суждения со сходной ценой (скажем, от 8,1 до 9,2) и с квартальными отклонениями, равными 1,0; 1,3; 1,5, то в итоговую шкалу отбирается суждение с Q=l,0, как получившее наиболее согласованную оценку судей.
В окончательном виде шкала обычно содержит от 15 до 30 суждений, каждое из которых имеет "цену" или "вес", определенный по медиане судейских решений.
Очевидно, что, коль скоро арбитраж 50 судей позволил найти пороги различения между суждениями, шкалу можно признать метрической шкалой равных интервалов с отсчетом от 0.
(6) Для использования в массовом опросе все суждения тасуются как игральные карты. Опрашиваемые выражают согласие или несогласие с каждым из предложенных суждений. Цена суждения в опросном листе не проставлена: веса всех суждений записаны в инструкции по обработке данных.
(7) Индивидуальный ранг опрошенного по шкале Тёретоуна определяется как медиана весов принятых им суждений. Например, в ответах некоего лица содержится всего четыре принятых суждения (все остальные им отвергнуты) с весами (S): 4,4; 4,8; 5,1; 5,6; 6,1. Тогда ранг индивида соответствует медианной оценке 5,1. При четном числе принятых пунктов медианный ранг можно принять как среднеарифметическое интервала, в котором лежит медиана.
(8) Ранговая позиция группы опрошенных определяется как среднеарифметическая рангов всей совокупности, составляющей группу.
Обоснованность и устойчивость шкалы можно проверить с помощью уже известных нам приемов: использование независимого критерия, контроль по известной группе, повторное измерение с интервалом во времени.
Не обязательно начинать отбор суждений со столь большого числа вариантов, как это делал Тёрстоун. Наша практика показывает, что 30—50 суждений вполне достаточны для судейского отбора, после которого определится десяток вполне приемлемых пунктов шкалы. Также не обязательно вовлекать в работу очень большое число судей: можно получить статистически устойчивые данные на 50—60 экспертах.
Работа с экспертами, аналогичная описанной выше, широко применяется и в других случаях, когда мы обращаемся к выборочной группе из массива обследуемых для того, чтобы глазами будущих испытуемых проверить соотносительную значимость оценок, придаваемых пунктам шкалы.
Шкала отношений отличается от интервальных шкал лишь тем, что имеет нулевую точку отсчета, которая указывает на полное отсутствие измеряемого свойства.
Подобные шкалы приняты в точных науках, где нулевой пункт (точка отсчета — из чего и происходит название "точные науки") экспериментально зафиксирован.
Идеальные метрические шкалы успешно применяются для измерения некоторых физиологических и психических свойств человека. Точка отсчета определяется в этих случаях как порог восприятия и порог насыщения. Известно, например, что существует среднестатистический порог восприятия звуковых колебаний. То же относится и к некоторым психическим реакциям людей (например, порог различения сходных фигур).
В социологии шкалы такого рода имеют весьма ограниченное применение. Ими пользуются для измерения протяженностей во времени и пространстве, для отсчета натуральных единиц (денежных единиц, продуктов деятельности, поступков). Во всех этих случаях нулевой пункт четко фиксируется.
Что касается измерения качественных свойств социальных явлений, поиск нулевого пункта как точки отсчета заведомо обречен на неудачу. Как правило, социальные процессы и характеристики варьируют от ситуации к ситуации столь сильно, что нулевой пункт может быть установлен только как среднестатистическая величина в большой массе событий.
Каждая из рассмотренных шкал допускает лишь определенный тип операций между символами шкалы, обозначающими соответствующие категории изучаемого показателя (признака). Т. о., определенная шкала допускает вычисление лишь определенного набора статистических характеристик. Так, на номинальных шкалах вычисляются лишь простейшие показатели — частота (либо процентное распределение), мода (как характеристика средней тенденции). Пользуясь шкалой отношений, можно применять любые известные статистические методы расчетов (см. табл.).
Тип данных характеризуется размерностью, т. е. числом переменных, входящих в анализ. Так, средние данные, меры рассеяния, коэффициенты корреляции характеризуют распределения одной или двух переменных. Однако сложность социальных процессов приводит к необходимости использования в социологических исследованиях методов многомерного статистического анализа, в частности — метода многомерного шкалирования, т. е. класса методов, с помощью которых исходя из оценок респондентами сходства (несходства) между объектами и с учетом сделанных предположений определяется размерность пространства восприятия и положения объектов в этом пространстве. Здесь эмпирическая система с отношениями отображается в многомерной числовой системе — пространстве восприятия, и поэтому шкала является многомерной.
В данном случае задача исследователя состоит в выделении оснований (характеристик), по которым респонденты оценивают объекты, и в получении непосредственной оценки объектов по этим характеристикам — многомерной шкале.
Для решения такой задачи нужны исходные данные, которые не навязывали бы респонденту никаких представлений о тех характеристиках, которые он мог бы использовать при восприятии исследуемых объектов. Такие данные можно получить, предлагая, напр., респондентам оценить сходство между объектами, не ограничивая его в выборе характеристик, по которым он будет оценивать это сходство.
Таблица 6. Уровни измерение и их характеристики[5]
Шкала | Описание шкалы | Отношение, задаваемое по шкале | Пример допустимой статистики |
Номинальная | Использование чисел или символов только для классификации объектов | эквивалентность | Частота; мода; энтропия Н; меры взаимозависимости; Q, Ф, С – Пирсона, Т – Чупрова, К - Крамера |
Порядковая | Иерархическая соподчиненность объектов одного класса с объектами других классов | Эквивалентность; «Больше, чем…» | Медиана; квантили; меры взаимозависимости; rs – Спирмена; r – Кендалла |
Интервальная | Знание расстояния между двумя любыми числами на шкале (в дополнение к порядковой шкале) | Эквивалентность; «Больше, чем…»; Знание отношения между любыми двумя интервалами | Средние арифметические; дисперсии; меры взаимозависимости; С – Пирсона; R – множественный коэффициент корреляции; все известные операции с натуральными числами |
Отношений | Независимость отношения любых двух точек шкалы от единицы измерения (интервальная шкала = истинная нулевая точка) | Эквивалентность; «Больше, чем…»; Знание отношения между любыми двумя интервалами; Знание отношения между любыми двумя шкальными значениями | То же |
Номинальные упорядоченные шкалы предполагают ранжирование объектов (свойств), а простые номинальные шкалы есть лишь их классификация. Однако классификация в номинальной шкале, а тем более ранжирование объектов — это тоже измерение, так как с помощью данных процедур, мы фиксируем меру, протяженность, континуум. В социологии, а также в психологии приходится, как правило, довольствоваться такими элементарными способами первичного измерения. Но этого, в общем, достаточно для того, чтобы фиксировать тенденцию изучаемого социального процесса. На большее социолог не претендует, да вряд ли и должен претендовать.
[1] Верификация(позднелат. verificatio — доказательство, подтверждение, от лат. verus — истинный и facio — делаю) эмпирическое подтверждение теоретических положений науки путём "возвращения" к наглядному уровню познания, когда идеальный характер абстракций игнорируется и они "отождествляются" с наблюдаемыми объектами. Например, идеальные геометрические объекты — "точки", "прямые" и пр. — "отождествляются" с их чувственными "образами". В общем случае В. — это построение наглядной модели для любой теории. В философии неопозитивизма это требование получило статус методологического принципа возможности опытной проверки, или принципа В. В известном смысле оно аналогично требованию практической применимости абстракций, заключающейся в удалении абстракций, в замене их "конкретными" объектами, от которых они (могут быть) абстрагированы. Однако, поскольку не всякую применяемую абстракцию можно верифицировать, то есть исключить "наглядным" способом (ибо не всякая реальность, отражением которой является абстракция, наглядна), критерий В. не тождествен критерию практики.
[2] О типах шкал более подробно см.
Клигер С.А., Косолапов М.С., Толстова Ю.Н. Шкалирование при сборе и анализе социологической информации. М. : Наука, 1978.
Косолапов М.С. Типология шкал как основа адекватной интерпретации исходных данных // Сравнительный анализ и качество эмпирических социологических данных. Отв. Ред. В.Г. Андреенков, М.С. Косолапов. М.: ИСИ АН СССР, 1984.
[3] Об использовании различных коэффициентов при работе с неупорядоченными номинальными шкалами см.
Рабочая книга социолога. Отв. Ред. Г.В. Осипов. М.: Наука, 1983. С. 169—172, 189—199.
Интересен метод, предложенный С. В. Чесноковым, который позволяет анализировать данные, фиксированные в номинальных шкалах, используя относительно "естественный" язык представления результатов, хорошо доступных неспециалистам.
Чесноков С.В, Детерминационный анализ социально-экономических данных. М.: Наука, 1982.
[4] Надежность парных сравнений существенно повышается, если предлагается оценить предпочтительность одного из двух объектов не дихотомически (либо-либо), а в пяти- семибалльной шкале. Такой способ применил В. А. Лосенков при разработке методики изучения социальных установок.
[5] Рабочая книга социолога,—М.: Наука, 1983.—С. 144—148.