Анализ связи ранжированных рядов

Ранжирование – процедура упорядочивания любых объектов по возрастанию или убыванию некоторого их свойства при условии, что они этим свойством обладают.

Можно ранжировать:

- государство по уровню жизни, рождаемости, безработице;

- профессии по престижности;

- товары по предпочтению потребителей;

- респондентов по политической активности, материальному положению;

- и так далее.

Объектами ранжирования являются те объекты, которые непосредственно упорядочиваются. Основание ранжирование (ранжирующий признак) – то свойство, по которому объекты упорядочиваются. В результате ранжирования получаем ранжированный ряд, в котором каждому объекту приписывается свой индивидуальный ранг – место объекта в ранжированном ряду. Число мест и, соответственно, число рангов в ранжированном ряду равняется числу объектов.

Виды ранжированных рядов:

1) каждый объект имеет значение признака, отличное от значений признака других объектов, тогда каждому объекту ранжированного ряда присваивается свой, отличный от другого объекта, ранг;

2) несколько объектов имеют одинаковое значение признака, тогда этим объектам в ранжированном ряду присваивается одинаковые ранги, рассчитанные по определенной формуле. В этом случае ранжированный ряд называется ранжированным рядом со связанными рангами. При решении задач первый ранг будем присваивать наибольшему значению признака. Связанный ранг рассчитывается как среднее значение мест, занимаемых объектами, имеющими одинаковое значение признака. Установление статистической связи для 2-х и более ранжированных рядов осуществляется с помощью ранговых коэффициентов связи – такие коэффициенты, которые позволяют вычислять степень согласованности в ранжировании одних и тех же объектов по двум различным основаниям (признакам). Наиболее распространенным коэффициентом ранговой связи (ранговой корреляции) является коэффициент ρ-Спирмена.

Допустим, что н объектов упорядочены по признаку х и по признаку у. Пусть

Rxi

Ryi

Мера несовпадений рангов i-того объекта: di = Rxi - Ryi

анализ связи ранжированных рядов - student2.ru

Свойства:

- изменяется в интервале от -1 до 1;

- ро = 1, если наблюдается полная согласованность ранжированных рядов; ранги одного и того же объекта по двум признакам совпадают.

- ро = -1, если полная несогласованность ранжированных рядов; такая ситуация возникает, если ранговые ряды имеют обратное направление: Rxi – 1 2 3 4 5; Ryi – 5 4 3 2 1.

Замечание: может рассчитываться для двух видов равных (если каждый объект свой ранг и если имеются связанные ранги).

Проверка гипотезы о статистической значимости коэффициента ρ-Спирмена.

H0: ρгс = 0

H1: ρгс ≠ 0

анализ связи ранжированных рядов - student2.ru

Нулевая гипотеза всегда утверждает, что ρ равен 0. Альтернативная – что значение ρ отлично от 0.

Уровень значимости как в таблицах сопряженности.

df = n -2

Государство А Б В Г Д Е Ж З И
Качество жизни 6,8 7,0 6,5 5,9 4,6 5,7 4,5 5,8 4,0
Безработица 20,3 18,0 19,8 23,4 21,6 20,8
Ранг x
Ранг y
|di|
d2i
Σ d2i                  

анализ связи ранжированных рядов - student2.ru

τ -Кендалла – разность между вероятностями правильного и неправильного порядка для двух наблюдений, извлечённых из совокупности случайно при условии, что связанные ранги отсутствуют. Свойства:

- изменяется от -1 до 1;

- если признаки х и у статистически независимы, то коэффициент τ обращается в 0; если τ равен 0, еще не значит, что признаки статистически независимы;

- если τ равен 1, это значит, что между признаками имеется полная прямая статистическая связь или ранжированные ряды полностью согласованы; если τ равно -1, это значит, что присутствует полная обратная статистическая связь, или ранжированные ряды являются несогласованными.

анализ связи ранжированных рядов - student2.ru

S – общее число пар объектов с согласованным правильным порядком по обоим объектам. D – общее число пар объектов с несогласованным неправильным порядком по обоим объектам.

Проверка гипотезы о статистической значимости коэффициента τ:

H0: τгс = 0

H1: τгс ≠ 0

анализ связи ранжированных рядов - student2.ru

Коэффициент τ является статистически значимым, если его значения для ГС отлично от 0.

|Z H| > Zкр => H1

анализ связи ранжированных рядов - student2.ru

Если ранжированный ряд построим для малого числа объектов, то подтверждение нулевой гипотезы нам говорит о том, что нужно изучить большее количество объектов.

Если изучено достаточное количество объектов, то подтверждение нулевой гипотезы говорит о том, что связь между признаками отсутствует.

Множественный коэффициент ранговой связи

Применяется в тех случаях, когда необходимо измерить связь между более чем 2 ранжированными рядами (например, когда мы хотим оценить согласованность мнений экспертов (более 2) при оценке 1 и тех же объектов).

анализ связи ранжированных рядов - student2.ru

S – сумма квадратичных отклонений значений рангов по строке от среднего ранга для всей совокупности. k2 – число переменных (число экспертов). n – число ранжируемых объектов.

Проверка гипотезы о статистической значимости коэффициента W:

H0: Wгс = 0

H1: Wгс ≠ 0 – значим

x2 = x21-α;df df = n – 1

анализ связи ранжированных рядов - student2.ru

Наши рекомендации