Показатели вариации признака

Средние величины раскрывают важную обобщающую харак­теристику совокупности по варьирующему признаку. Рассчитав их, необходимо уяснить, насколько они показательны, типич­ны или однородны. Одинаковые средние могут характеризовать совершенно разнородные совокупности. Покажем это на элемен­тарном примере, который будем усложнять по мере расчета но­вых показателей вариации.

Предположим, что в одном суде 10 осужденным были назна­чены такие сроки лишения свободы: 1, 2, 3, 3, 4, 9, 10, 12, 13, 15 лет, а в другом также 10 осужденным было назначено: 6, 6, 7, 7, 7, 7, 8, 8, 8, 8 лет. Средняя арифметическая в обоих случаях будет одинаковой:

Зс, = £*: « = (1+2 + 3 + 3 + 4 + 9 + 10 + 12 + 13 + 15): 10 = 72 : 10 = 7,2 года; х2 = ^х: « = (6 + 6 + 7 + 7 + 7 + 7 + 8 + 8 + 8 + 8): 10 = 72: 10 = 7,2 года.

Средние равны, а ряды существенно различаются между со­бой: первый ряд менее однороден, чем второй, следовательно, и средняя первого ряда менее показательна и менее надежна, чем средняя второго.

Для того чтобы наши суждения о различиях подобных вари­ационных рядов были статистически точными, можно прибег­нуть к показателям отклонений различных вариант от средней. Возьмем пока крайние отклонение. В первом ряду отклонения первого члена (1) от средней (7,2) равно-6,2, отклонение десятого члена (15) от средней (7,2) равно+7,8. Во втором ряду аналогичные отклонения равны -1,2 и +0,8. Полученные резуль­таты уже можно математически сопоставлять и измерять. Они подтверждают наши предварительные суждения. Теперь рассчи­таем все отклонения значений признаков обоих вариационных рядов от средней арифметической и сведем эти расчеты в табл. 9.

Таблица 9

Расчет отклонений

№ п/п Первый суд Второй суд
Сроки лишения свободы м Отклоне­ния от средней (х-х) Квадрат отклоне­ний (*-*)' Сроки лишения свободы (X) Отклоне­ния от средней (х-х) Квадрат отклоне­ний (х-.х)
-6,2 38,44 -1,2 1,44
-5,2 27,04 -1,2 1,44
-4,2 17,64 -0,2 0,04
-4,2 17,64 -0,2 0,04
-3,2 10,24 -0,2 0,04
+ 1,8 3,24 -0,2 0,04
+2,8 7,84 +0,8 0,64
+4,8 23,04 +0,8 0,64
+5,8 33,64 +0,8 0,64
+7,8 60,84 +0,8 0,64
Итого 72 239,60 5,6

Первый и наиболее простой показатель вариации — это раз­мах вариации R. Он исчисляется в виде разности между наиболь­шими и наименьшими значениями варьирующего признака:

В первом суде размах вариации наказания оказался равным Л, = 15 - 1 = 14, а во втором — Кг = 8 - 6 = 2. Различия существен­ны: R} > R2 в 7 раз. Но может случиться так, что и размах вари­ации будет одинаковым, равным. Например, /{, = 15-10 = 5; /?з = 8-3 = 5, хотя ряды существенно различаются между собой. Размах вариации улавливает только крайние отклонения, но не отражает отклонений от средней всех значений признака в вариационном ряду. Последнее можно получить, если рассчи­тать отклонения всех вариант от средней (х, - ~х ) + (х2 - ~х) + и т. д. (графы 3 и 6 табл. 9) и исчислить среднюю арифметическую из всех отклонений.

При изложении средней арифметической величины мы уста­новили, что сумма всех положительных (которые больше сред­ней) и всех отрицательных (которые меньше средней) отклоне­ний равна нулю, что мы и видим в итоге граф 3 и 6 табл. 9. По­этому при расчете средней арифметической из отклонений не­обходимо абстрагироваться от знаков «+» и «-». В этом случае сум­ма отклонений £(х - х), разделенная на число отклонений п, а при наличии частот — на число /, и будет средним арифмети­ческим отклонением. В связи с этим расчетная формула будет выглядеть так:

В результате мы получили среднее арифметическое (линейное) отклонение, которое обозначается символом d. Это вторая мера измерения вариации признака.

Среднее арифметическое (линейное) отклонение в статис­тическом анализе применяется редко. Обычно используют тре­тий показатель вариации — дисперсию, или средний квадрат от­клонений. Она обозначается символом а (сигма малая в квадра­те) и представляет собой то же среднее арифметическое откло­нение (</), но только отклонения возведены в квадрат и из квад­ратов отклонений исчисляют среднюю величину:

а = — — - , а при наличии частот а =

При расчете дисперсии не надо абстрагироваться от знаков (+ и -) отклонений, так как при возведении в квадрат все знаки отклонений становятся положительными.

Если извлечь корень квадратный из дисперсии, то мы полу­чим следующий, четвертый, показатель вариации — среднее квадратическое отклонение, которое обозначается символом а (сигма малая):

Дисперсия и среднее квадратическое отклонение являются наи­более распространенными и общепринятыми показателями вариа­ции изучаемого признака.

В юридической статистике они используются при сравнитель­ных статистических исследованиях, для обоснования ошибки реп­резентативности (ошибки выборки) выборочного наблюдения, а также при изучении корреляционных и иных статистических связей между признаками фактора и признаками следствия, или между причиной и следствием.

Дисперсия и среднее квадратическое отклонение обладают рядом свойств, которые приводятся без доказательств:

1) дисперсия постоянной величины равна нулю;

2) дисперсия не меняется, если все варианты увеличить или уменьшить на какое-то постоянное число Л;

3) если все варианты умножить на какое-то постоянное чис­ло А, то дисперсия увеличится в А раз, а среднее квадратичес­кое отклонение — в А раз;

4) если все варианты разделить на какое-то постоянное А, то дисперсия уменьшится в А раз, а среднее квадратическое отклонение — в А раз.

Эти и другие свойства дисперсии могут быть использованы для упрощения и оптимизации техники расчетов.

В графах 4 и 7 табл. 9 мы находим квадрат отклонения каж­дой варианты и их суммы. Использовав их, мы и рассчитаем дисперсию и среднее квадратическое отклонение для мер нака­зания 1-го и 2-го судов.

Дисперсия о? = 23,96 для первого суда, а среднее квадратическое отклонение: о, = д/of = ,/23,96 = 4,9 года. ДисПерсия 02 =

= 0,56 для второго суда, а среднее квадратическое отклонение: о2 = v°2 = Д56 = 0,75.

Таким образом, меры наказаний, вынесенные первым су­дом, отклоняются от среднего на 4,9 года, а вынесенные вто­рым судом — на 0,75 года. Разница достигает 6,5 раза. Это существенно. Таким образом, средняя второго суда действительно более надежна, типична и показательна.

Пятый (по счету) показатель вариации -- это коэффици­ент вариации. В отличие от размаха вариации, среднего линей­ного, среднего квадратического отклонения и дисперсии, ко­торые выражаются в абсолютных и именованных числах, ко­эффициент вариации является показателем относительным. Он выражается в процентах, обозначается символом У и рассчи­тывается по формуле:

где V — коэффициент вариации; о — среднее квадратическое отклонение; х средний арифметический показатель.

В наших примерах коэффициент вариации будет равен: 4,9-100%

= > Для первого суда;

0,75-100% 7,2

= 10,4% для второго суда.

Коэффициент вариации предоставляет большие возможности для сравнительных изучений, поскольку сравнивать, например, средние квадратические отклонения вариационных рядов с разны­ми уровнями непосредственно нельзя. Коэффициент вариации в известной мере является критерием типичности средней. Если он относительно большой (например, выше 40%), то это значит, что типичность такой средней очень невысока. И наоборот, если его значение малое, то средняя является типической и надежной.

Анализ вариационных рядов

С вариационными рядами мы встречались при обосновании выборочного наблюдения, изучении структурных и вариацион­ных группировок, относительных и средних величин. К ним мы вынуждены будем обращаться и в последующих темах. Из пре­дыдущего мы знаем, что вариационный ряд представляет собой группировку по одному признаку и с единственным показате­лем в сказуемом — меняющимся числом единиц совокупности, выраженных в абсолютных или относительных величинах.

Таблица 10 Распределение преступлений по возрасту субъектов

Возраст, лет До 15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-60
Преступле­ния, %

Обратимся к общеизвестному вариационному ряду -- рас­пределению преступлений по возрасту их субъектов. Примером может служить табл. 10 с усредненными показателями для мно­гих стран.

Представленный в табл. 10 интервальный вариационный ряд отражает вполне определенную связь между варьирующим воз­растом и изменением частот (процентами лиц, совершивших пре­ступления). По данным мировой, российской и региональной статистики наблюдается практически одна и та же тенденция распределения правонарушителей по возрасту: с начала возра­ста уголовной ответственности идет рост преступной активно­сти, в 25—30 лет (с некоторыми колебаниями) ее уровень дос­тигает апогея, а затем наступает постепенное снижение'. В этом проявляется определенная закономерность изменения частот в ва­риационных рядах, называемая закономерностью распределе­ния, которая выявляется в больших совокупностях, где слу­чайные отклонения взаимоуничтожаются.

В выявлении реальных закономерностей распределения заклю­чается основная суть анализа вариационных рядов. Все вариации, подчиняясь своей в основе указанной закономерности, имеют много типов особенностей (отклонений), каждая из которых свя­зана с теми или иными причинами, установление которых иг­рает важную роль в статистическом анализе.

Обстоятельства, определяющие тип закономерностей рас­пределения, изучаются на основе качественного (криминоло­гического, уголовно-правового, уголовно-процессуального, ад­министративно-правового, гражданско-правового и т.д.) ана­лиза сути того или иного явления, а именно — тех его свойств и условий, которые определяют изменчивость варьирующего признака. Но к такому изучению приводит лишь выявленный тип закономерностей рядов распределения.

Обратимся к данным табл. 10. Удельный вес преступников с увеличением их возраста растет (прямая зависимость), но, дос­тигнув какого-то уровня, несмотря на продолжающееся увели­чение возраста, снижается до минимума (обратная зависимость). Однако максимум удельного веса (мода) находится не посреди­не ряда (интервал 31—35 лет), а сдвинут к более молодому воз­расту (26—30 лет). Близко к моде располагается доля 21—25 лет и только потом идет 31—35 лет.

Такой сдвиг к молодому возрасту неслучаен. На качествен­ном уровне криминологического анализа давно установлено, что лица молодежного возраста, не имея необходимого жизненного опыта и устойчивых позитивных ориентации, попав в сложные жизненные ситуации, вступают в конфликт с законом чаще, чем люди более зрелого возраста. Это связано, с одной стороны, с недостаточным уровнем их социальной зрелости, с другой -со сложностью возрастной ситуации (ослабление прежнего со­циального контроля со стороны семьи, школы, старших; пере­ход к самостоятельности; физическое достижение взрослости; рост материальных и физических потребностей; необходимость самообеспечения, определения в жизни и т. д.), к правильному решению которой они чаше всего не готовы. Следовательно, объяснение этого традиционного сдвига лежит не в физиологи­ческих, а социальных особенностях возрастного характера.

Приведенные объяснения лежат за пределами юридической статистики, но к ним трудно прийти на основе только логичес­ких умозаключений, даже в данном несложном вопросе. Для этого надо выявить особенности реального статистического распреде­ления значений признака. Чтобы зафиксировать характер имею­щихся отклонений, надо сопоставить реальное распределение с каким-то его эталоном. Такой эталон — теоретическая кривая рас­пределения, которая выражает общую закономерность распреде­ления, исключающего влияние случайных факторов. Эта кривая распределения называется кривой Лапласа—Гаусса, или нормаль­ным распределением. В качестве эталона используются также рас­пределение Пуассона и некоторые другие, но они практически не применяются юридической статистикой.

Учитывая, что общая характеристика нормального распре­деления относительно полно рассматривалась в главе о выборочном наблюдении, в данном параграфе будут изложены лишь его особенности, необходимые для сравнительного анализа ва­риационных рядов.

Нормальное распределение выражается сложной формулой

где Р — кривая нормального распределения; х — варианты; х — средняя арифмети­ческая вариант; о — среднее квадратическое отклонение; е и л — математические постоянные: е = 2,7182 и к = 3,1415.

В конечном итоге кривая нормального распределения зави­сит только от двух параметров: средней арифметической (х) и среднего квадратического распределения (о). От их значений за­висит расположение центра распределения кривой на оси х и различия вариантов около этого центра (рис. 1 и 2), а также определенные асимметрии левой и правой ветвей относитель­но центра (рис. 3 и 4).

Рис.2

х > Mo

х < Mo

В нормальном распределении левая и правая ветви кривой симметричны, а средняя арифметическая, мода и медиана рав­ны. Однако при соблюдении этого равенства кривые могут суще­ственно различаться между собой.

Если средняя арифметическая величина (х) небольшая, то кри­вая располагается ближе к оси ординат (У), если — большая, то кривая сдвинута вправо от оси Рх (рис. 1, кривые 1 и 2).

Если среднее квадратическое отклонение (о) большое, то кривая распределения является высоковершинной (рис. 2, кри­вая I), что свидетельствует о скоплении частот в середине, о типичности и надежности средней. Такое положение в статис­тике называют положительным эксцессом.

Если среднее квадратическое отклонение небольшое, то кри­вая распределения является низковершинной (рис. 2, кривая 2), что свидетельствует о значительной разбросанности частот ряда и недостаточной надежности средней. В статистике указанные осо­бенности называют отрицательным эксцессом.

Нормальное распределение симметрично по отношению к средней арифметической величине (х). Однако симметричных реальных распределений намного меньше, чем асимметричных. В асимметричном распределении средняя арифметическая, мода и медиана не совпадают, и их отклонения друг от друга изме­ряются с помощью коэффициента асимметрии (КА), который рассчитывается по следующей формуле:

где КА — коэффициент асимметрии; х — средняя арифметическая; Мо — мода; а — среднее квадратическое отклонение.

Суть перечисленных параметров нам известна. Из их соотно­шения в формуле следует:

если средняя арифметическая больше моды (Г > Мо), то коэффициент асимметрии положительный, и это означает пра­востороннюю асимметрию, т. е. правая часть кривой оказывается длиннее левой (рис. 3);

если средняя арифметическая меньше моды (Г < Мо), то ко­эффициент асимметрии будет со знаком минус (отрицательный), что означает левостороннюю асимметрию, т. е. левая часть кри­вой длиннее правой (рис. 4).

Вспомним наш пример (см. табл. 10), в котором наибольшая частота совершаемых преступлений падает на интервал 26—30 лет, а не на средний интервал (31-35 лет). Из этого можно предпо­ложить, что мы имеем дело с отрицательным коэффициентом асимметрии.

Модальный интервал в примере равен 26-30 годам, которо­му соответствует 26%-ная частота совершения преступлений. Модальная величина (Мо) в модальном интервале рассчитыва­ется по известной нам формуле Мо =*,,+»-/Мо ~ /1

где Ха = 26 лет (минимальная граница модального интервала); i = 5 лет (величина модального интервала); /Мо = 26 (частота модального интервала);/, = 22 года (час­тота интервала, предшествующая модальному);^ = 19 (частота интервала его сле­дующего за модальным).

При приведенных данных имеем:

Величина *арифм = 28,97 года (порядок расчета средней ариф­метической интервального ряда изложен в § 3 настоящей главы). Напомним лишь основные действия расчета: вначале определя­ется середина каждого интервала путем сложения двух его гра­ниц и деления полученной суммы на два (например, (26+30) : 2=28); затем середину каждого интервала умножаем на его частоту (28 • 26 преступлений = 728); после этого получен­ные произведения складываем (общая сумма произведений се­редины интервалов на частоту равна 2897); разделив эту сумму (2897) на общую сумму частот (100), мы получим среднюю арифметическую, равную 28,97 года.

Это означает, что средняя арифметическая больше моды С* > Мо или 28,97 > 27,5), т. е. мы имеем дело с правосторонней асимметрией и положительным коэффициентом асимметрии. Для расчета КА необходимо знать среднее квадратическое отклоне­ние. Найдем его из табл. 11.

Таким образом,

Таблица 11

Расчет среднего арифметического отклонения

Возраст лиц (х), лет Доли пре­ступлений (/) Середина интервала (*ср.) Произве­дения (Л*р.) Отклоне­ния (*ср.-*) Дисперсия (*ср. - *)
до 15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-60 3 11 22 26 19 10 5 3 1 14,5 18 23 28 33 38 43 48 55,5 43,5 198 506 728 627 380 215 144 55,5 -14,47 -10,97 -5,97 -0,97 +4,03 +9,03 + 14,03 +19,03 +26,53 209,4 120,3 35,6 0,9 16,2 81,5 196,8 362,1 703,8
  1/ = юо   I/V" 1(хср.-х) = 1726,6

Если изобразить полученные результаты графически, то при имеющихся данных х = 28,97 и Мо = 27,5, откуда 1с > Mo, ах — — Мо = 1,47, мы получим график с правосторонней асимметрией и положительным коэффициентом КА = 0,1. Он будет близок к графику, изображенному на рис. 3.

Мы провели полный расчет коэффициента асимметрии с ее графическим изображением для иллюстрации аномальных воз­можностей вариационных рядов, по многочисленным показате­лям которых можно проводить углубленный статистический срав­нительный анализ.

При моделировании рядов распределения в целях сравнения реального вариационного ряда с нормальным распределением можно проверить их соответствие на основе выравнивания фак­тического распределения по кривой нормального распределения. Для этого частоты фактического распределения сравниваются с теоретическими частотами, которые вычисляются на основе име­ющихся фактических данных, находят нормированные отклоне­ния, а затем по их величине рассчитывают частоты теоретичес­кого нормального отклонения.

Математической статистикой также разработано несколько показателей, по которым можно судить о том, как согласуется фактическое распределение. Эти показатели называются крите­рием согласия. Их много. Наибольшее распространение имеет критерий согласия Пирсона (критерий % - хи-квадрат), который рассчитывается по формуле

Для оценки близости эмпирического распределения к теоре­тическим определяют вероятность достижения хи-квадратом ве­личины P(-i) при случайных колебаниях. Если вероятность выше"* 0,05, то отклонения фактических частот от теоретических можно считать случайными, а если меньше, то эмпирическое распреде­ление является принципиально отличным от рассчитанного тео­ретического. Для простоты расчетов статистиками разработаны спе­циальные таблицы вероятностей Дх)> которые обычно приводятся в виде приложений к учебникам по общей теории статистики.

Следующий критерий согласия — критерий Колмогорова (кри­терий лямбда), который обозначается символом А. (лямбда). Этот критерий используется при анализе близости фактического и те­оретического распределений путем сравнения кумулятивных (на­копительных, фактических и теоретических) частот в вариаци­онном ряду. Он рассчитывается по формуле

где Р — разность между фактической и теоретической частотой; п — число наблюдений.

По полученным результатам также в специальной таблице можно найти искомую вероятность для критерия согласия лямбда.

Вышеизложенные вопросы выравнивания фактического рас­пределения по кривой нормального распределения, а также кри­терии согласия Пирсона и Колмогорова в силу недостаточной математической подготовки юристов практически не использу­ются в юридической статистике. Исходя из реальных потребнос­тей юридической науки и практики, небольшого объема курса юридической статистики, названные методы представлены в учеб­нике в кратком изложения лишь для ознакомления будущих юри­стов. Эти методы широко распространены среди экономистов, социологов и других специалистов, к результатам исследований которых нередко обращаются и юристы. Объем изложения упо­мянутых методов в учебнике дает возможность более или менее адекватно оценить их при чтении специальной литературы, а по необходимости — и использовать в своей аналитической ра­боте. При этом очень важно не скатиться к статистическому ме­ханицизму, примеры которого до сих пор не изжиты. Обра­тимся к одному из них.

Закономерности распределения в вариационном ряду косвенно используются в модульной теории социума. В ней социум иссле­дуется в виде взаимосогласованной гармоничной системы, со­стоящей из элементов и частей, между которыми существуют сла­женные отношения, выражающиеся в устойчивых пропорциях (распределениях), которые могут измеряться в удельных весах или долях. В связи с этим было высказано предположение о наличии в социуме самых разных положительных и отрицательных девиа­ций (текучесть кадров, неявка на работу, травматизм, гомосек­суализм и лесбиянство, алкоголизм, уклонение от участия в вы­борах, богачи, таланты, мигранты и т. д.), доля которых якобы не превышает 4-10%.

Закономерности распределения тех или иных явлений в об­ществе действительно существуют, но их доли, хотя и в некото­рых пределах, относительно подвижны и зависимы от складыва­ющихся социальных условий. Вспомним, например, распределе­ние женщин и мужчин в структуре выявленных преступников, в котором доля женщин всегда была меньше удельного веса муж­чин и в зависимости от условий (экономическая стабильность, война, кризис и т.д.) составляла 12—20—30%. Можно было бы привести множество других более или менее устойчивых распре­делений. Но никакой «константы необходимой дисгармонии в обществе» или криминальной сфере не наблюдалось. Тем не ме­нее, одним из поклонников этой теории было выдвинуто ничем не аргументированное предположение о якобы устойчивом, по­всеместном и необходимом удельном весе преступников в струк­туре населения (независимо от исторических традиций, соци­альных условий жизни, уровня криминализации общественно опасных действий в уголовном законодательстве и других обсто­ятельств в той или иной стране), равном 5,6% от общей числен­ности населения (в течение года).

Исходя из этих недостоверных выводов, автор, широко ис­пользуя статистические и математические методы относительных и средних величин, «с легкостью» рассчитал латентную преступ­ность по более чем 90 странам. Подход прост: на основе числен­ности населения в той или иной стране он исчислял общее чис­ло ежегодно наличествующих (5,6 %) преступников и путем вы­читания из этого числа количества выявленных правонарушите­лей получал латентную преступность. Обратимся к его непосред­ственным расчетам. В 1985 г. в Швеции насчитывалось 8,35 млн человек населения, среди которых автор нашел 467 600 выявлен- ' ных и невыявленных преступников. Вычтя из этой суммы общее число установленных преступников, он получил 122 803 челове­ка «незарегистрированных преступников» (термин автора этой теории).

В действительности в 1985 г. в Швеции было только зарегист­рировано 1 018 349 преступлений, или 12 184 деяния на 100 тыс. населения, что составляет 12,2% его общей численности. Для их совершения 5,6% («необходимый» удельный вес преступников в обществе) правонарушителей должны были в течение года со­вершить более чем по 2 зарегистрированных деяния каждый. Но кроме учтенной преступности, в Швеции существует латентная, уровень которой примерно соотносится с уровнем зарегистриро­ванных деяний. Аналогичные данные можно получить по США (если учитывать всю преступность, а не только индексную), Ве­ликобритании, Германии, Дании, Финляндии и другим стра­нам, где число преступлений на 100 тыс. населения в последние годы превышает 8 тыс. (или 8%).

Я привожу этот беспрецедентный пример статистических уп­ражнений с одной целью: статистика и математика и выявляемые с их помощью законы динамики и распределения применимы в социальных и юридических науках лишь тогда, когда они опира­ются на адекватные базовые показатели. Если последние неверны, никакие статистические измерения и расчеты, какими бы точны­ми они ни были, не приведут к объективным результатам. Немец­кий математик К.Гаусс обоснованно предостерегал: математика -это мельница. Она перемелет все, что угодно, но получится ли мука, будет зависеть от того, что в нее было засыпано.

Закономерности статистических распределений вполне мо­гут быть использованы в модульной теории социума, в том числе и для изучения распределения криминальных и иных противо­правных отклонений, но эти закономерности должны отражать реалии, а не предположения.

Структурная схема средних величин

Средние величины

Степенные

Конкретные

Средняя арифметическая   Мода
Средняя геометрическая   Медиана
Средняя гармоническая    
Средняя квадратическая    
    Размах вариации
     
    Среднее линейное отклонение
     
    Дисперсия
     
     
     
    Коэффициент вариации
     

Глава 10. РЯДЫ ДИНАМИКИ

Наши рекомендации