Естественный и поляризованный свет

ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА ЗАКОНА МАЛЮСА

Введение

Естественный и поляризованный свет

Свет, в котором представлены электромагнитные волны со всевозможными направлениями колебаний векторов напряженностей электрического поля Е и магнитного поля Н (удовлетворяющими условиям взаимной перпендикулярности и перпендикулярности к направлению распространения волны, см. рис. 1), называется естественным светом. Естественный свет неполяризованный. Поскольку векторы Е и Н перпендикулярны друг другу, то для описания поляризации света требуется знание поведения лишь одного из них. Обычно для этой цели выбирается вектор Е. У естественного света хаотический меняется со временем направление вектора Е в данной точке пространства. Если имеется некоторое преимущественное направление вектора Е, то свет будет поляризованным. Свет, у которого Е колеблется в одной плоскости, называют плоскополяризованным или линейно поляризованным. Плоскость , проходящая через вектор Е и направление распространения волны называется плоскостью поляризации, а перпендикулярная ей плоскость – плоскостью колебаний. Источники естественного света содержат огромное число атомов и молекул, возбужденных в различной степени. Одинаково возбужденные атомы излучают свет одной и той же частоты, но с самыми различными начальными фазами и с различной ориентацией плоскости поляризации в пространстве. В результате в естественном монохроматическом свете вектор Е в каждой точке пространства непрерывно и хаотический меняет свое направление в плоскости, перпендикулярной световому лучу, так что все направления оказываются равновероятными ( см. рис. 2 а). Направление Е в каждый момент времени непредсказуемо.

H
E
x
y
z
Рис. 1
Естественный и поляризованный свет - student2.ru
y
Естественный и поляризованный свет - student2.ru Колебания вектора E в любой точке пространства можно представить как результат сложения двух взаимно перпендикулярных векторов, Ex и Ey, каждый из которых описывает плоско поляризованную волну (рис. 3):

Естественный и поляризованный свет - student2.ru

Естественный и поляризованный свет - student2.ru ,

Естественный и поляризованный свет - student2.ru ,

Естественный и поляризованный свет - student2.ru .

При разности фаз d = mp (m = 0; ±1; ±2; ...) угол a не зависит от времени, т.е. колебание результирующего вектора E совершается в фиксированном направлении, что соответствует плоско поляризованной волне. При d = (2m+1)p/2 (m = 0; ±1; ±2; ...) и равенстве амплитуд, Ex0 = Ey0, конец вектора E описывает окружность - волна оказывается поляризованной по кругу (или циклически поляризованной). В случае произвольного постоянного значения d конец вектора E в каждой точке поля описывает эллипс. Такая волна называется эллиптически поляризованной. Естественный свет в свою очередь можно представить как результат сложения двух взаимно перпендикулярных плоско поляризованных волн с равной амплитудой, разность фаз d которых претерпевает случайные хаотические изменения.

Естественный и поляризованный свет - student2.ru Естественный свет может быть превращен в плоскополяризованный с помощью приборов, называемых поляризаторами. Поляризаторы свободно пропускают колебания, параллельные плоскости, которая называется плоскостью поляризатора, и задерживают колебания, перпендикулярные этой плоскости. Другими словами, через поляризатор проходит только та составляющая вектора E, которая параллельна плоскости поляризатора. Амплитуда EП этой составляющей связана с углом q между вектором E падающего света и плоскостью поляризатора, Естественный и поляризованный свет - student2.ru . При этом интенсивность IП света, прошедшего сквозь поляризатор, которая пропорциональна квадрату амплитуды, будет равна

Естественный и поляризованный свет - student2.ru , (1)

где I – интенсивность света на входе поляризатора. Для естественного света все значения угла q равновероятны, поэтому среднее значение cos2j = 1/2. Это означает, что интенсивность естественного света, прошедшего через поляризатор, уменьшается в 2 раза:

Естественный и поляризованный свет - student2.ru . (2)

Поляризаторы используются не только для получения, но и для анализа поляризованного света. В последнем случае их называют анализаторами. Если на пути плоско поляризованного света, вышедшего из поляризатора, поставить анализатор, то, как следует из формулы (1), интенсивность света на выходе анализатора будет равна

Естественный и поляризованный свет - student2.ru (3),

где j - угол между плоскостями поляризации поляризатора и анализатора. Соотношение (3) носит название закона Малюса. На рис. 4 в качестве примера показано, чему равны интенсивности света на выходе поляризатора и анализатора при различных относительных ориентациях их плоскостей (на рисунке плоскости поляризатора и анализатора проходят через прямую ОО’ и направление луча).

Наши рекомендации