Уровня СМФП в области левой (s.) и правой (d.) миндалин (Amygd.) в период 1 страница

Рис. 1.

Стереотаксический аппарат множественного наведения. Функциональные блоки: 1 — зубная пластина; 2 — основание аппарата; 3 — ориентирующее устройство; 4 — направляющее устройство; 5 — фантом (модель стереотаксических координат мозга и основание аппарата)

Таким образом, создавались и создаются методы, все более адекватные сложным проблемам физиологии мозга человека. Это - не славословие технике. Это - подчеркивание тех новых возможностей в комплексном изучении мозга, которые открываются при сближении наук о человеке с так называемой точной ветвью естествознания. Как специально подчеркивалось во всех наших предыдущих публикациях, комплексный метод включает не только более или менее подробно рассмотренные выше методики. В него входят регистрация и изучение физиологических и патологических показателей деятельности мозга и организма при диагностических и лечебных электрических воздействиях.

Результаты таких исследований наиболее полно представлены в отечественной и особенно зарубежной литературе. Достаточно упомянуть монографии Умбаха (Umbach, 1966), Сем-Якобсена (Sem-Jacobsen, 1968), Н. П. Бехтеревой (1971, 1974, 19806), Дельгадо (Delgado, 1971), Валенштейна (Valenstein, 1973), В. М. Смирнова (1976), Н. П. Бехтеревой с соавторами (1977в, 1978) и главы в монографиях и

сборниках (Данько, Каминский вкн.; Бехтерева и др., 1978; Ojemann, 1979, идр.). Кроме того, большое количество результатов стимуляций мозга описано в статьях тех исследователей, которые осуществляли электрическую стимуляцию при так называемых острых, одномоментных открытых и стереотаксических операциях по поводу гиперкинезов (Hassler et al., 1960, 1965).

Уровня СМФП в области левой (s.) и правой (d.) миндалин (Amygd.) в период 1 страница - student2.ru

Рис. 2. Обсуждение в

Лаборатории

Стереотаксическая неврология - новое научное направление, созданное В. М. Смирновым (1976), учение о функциональных спектрах, потенциях отдельных зон различных структур мозга человека, почти целиком базируется на результатах точечной электрической стимуляции мозга при паркинсонизме. Электрическая стимуляция, как указывалось выше, широко применяется при эпилепсии для уточнения эпилептогенных очагов и зон, тормозящих эпилептогенез. Полученные данные позволяют судить и о функциональных спектрах структур, и об изменениях физиологических показателей мозга. Предполагается, что электрическая импульсная стимуляция вызывает активацию стимулируемой структуры. Действительно, по- видимому, при оптимальных параметрах тока по отношению к структуре такого рода

эффект возможен. Однако изменение параметров стимуляции может не только вызывать эффекты разного знака, но и просто различные эффекты.

Например, не только мы (Бехтерева и др., 1966), но и другие авторы (Van Buren, 1963; Sem-Jacobsen, 1968) показали, что электрическая стимуляция редкими импульсами одной из зон хвостатого ядра вызывает распространенный эффект типа тормозного, причем угнетаются и патологические паркинсонические проявления. Эффект частой стимуляции был противоположным. Который же из них отражает активацию структуры? Аналогия с раздражением нервов здесь вряд ли уместна, так как при электрической стимуляции мозга оказывается одновременное воздействие на множество нервных клеток, имеющих исходно разные характеристики и находящихся к моменту стимуляции в разном состоянии.

Мы говорим и пишем - «диагностическая, лечебная стимуляция». А стимуляция ли? Может быть, точнее - мягкое, повторное угнетающее воздействие? Пытаемся спорить: при воздействии током наблюдаются так называемые эффекты возбуждения. Возражаем: а при паркинсонизме мы видим симптом - тремор, повышение тонуса, причем в патогенезе паркинсонизма важную роль играет нарушение в тормозящих дофаминергических структурах. И так далее и тому подобное. Pro и contra при решении вопроса не в оценке внешнего эффекта, а в физиологическом контроле за состоянием нервной ткани в области электрического воздействия до, во время (желательно!) и после него. Измерив медленные электрические процессы и оценив состояние активности нейронов, ответить на эти вопросы можно.

Дальнейшее накопление материалов даст возможность более уверенно говорить об истинной стимуляции в тех случаях, когда как будто создаются электрические предпосылки для нее, и наоборот, в тех же условиях воздействия предполагать скорее тормозной эффект. В клинике нередко принимается точка зрения, согласно которой механизм действия не анализируется, так как важен лишь конечный положительный лечебный эффект. Такая точка зрения имеет право на существование, но она же дает возможность оспаривать прежде всего сами клинические, все еще далекие от идеала результаты. Только зная, что именно происходит в нервной ткани при воздействии на нее, можно реально управлять лечением.

Так называемое стимулирующее электрическое воздействие может усиливаться или ослабляться с изменением интенсивности и частоты воздействия. Это, вероятно, результат того, что структура активируется или угнетается, происходит вовлечение меньшего или большего числа нервных элементов. Развиваются разного рода дистантные эффекты как результат вовлечения в реакцию других звеньев той же системы, как результат активации тех структур, эффект которых не проявляется, если активна зона мозга, где приложено воздействие, или, наоборот, дистантного торможения активности под электродом, подающим ток. Дистантные эффекты того типа, когда одна структура тормозит или активирует другую, или более общего типа, когда в результате электрического воздействия на модулирующие зоны мозга

меняется функциональное состояние сразу большого числа мозговых образований, все шире используются в клинике. При этом можно надеяться, что расшифровка физиологического состояния подвергающейся воздействию структуры позволит также более надежно направлять эффект в желаемое русло.

Но бывает, как указывалось выше, что при электрическом воздействии в зависимости от его параметров и исходного состояния структуры ответные реакции различаются не по знаку, не по интенсивности и многообразию, а по качеству. Так, например, при одном исходном состоянии стимуляция зоны обусловливает эмоциональную реакцию, при другом - ее отсутствие или изменение мышечного тонуса ит. д. В чем дело?

Как уже отмечалось выше, функциональный спектр мозговых зон в значительной мере определяется одной из составляющих СМФП - уровнем устойчивого потенциала милливольтового диапазона, или омега-потенциалом. Эта результирующая исходного функционального состояния и воздействия может определять эффект за счет активации или угнетения определенных типов клеток нейронной популяции под электродом, через который подается ток, или за счет поливалентности самих клеток.

В этом случае данный уровень относительно стабильного функционирования проявляет какую-то одну (или несколько) из валентностей.

Зачем об этом, таком простом и давнем в клинике и эксперименте методе - электрическом импульсном воздействии на мозг - писать так подробно здесь, где затрагиваются в основном общие вопросы? Затем, чтобы подчеркнуть: механизм явления не только значительно сложнее, чем кажется, но и, что очень важно, настоятельно нуждается в дальнейшем изучении. Может и должен быть изучен на современном уровне возможностей физиологического исследования и прежде всего на основе применения в клинике и эксперименте комплексного, полиметодического подхода. А если и не всегда изучен, то в каждом конкретном случае исследован. В свою очередь, это позволит пересмотреть очень многие данные о свойствах и функциональных спектрах мозговых структур.

В клинике и эксперименте применяется не только импульсное электрическое воздействие, но и воздействие плавно нарастающим и плавно убывающим постоянным током. В данном случае в зависимости от интенсивности и продолжительности его действия и исходного состояния ткани возможна ее активация под электродом, угнетение (торможение?) и разрушение. Слабый постоянный ток, соизмеримый по интенсивности с собственными токами мозга, применяется для местного (через внутримозговые электроды) и общего (через внемозговые электроды) воздействия - микрополяризации. Ток интенсивностью до одного миллиампера вызывает ограниченное местное разрушающее воздействие с перифокально распространяющимся и после прекращения его действия эффектом угнетения. Микрополяризация применяется для уточнения функционального значения зоны и для лечения, макрополяризация, как правило, - лишь как проба перед собственно

деструктивным, более массивным литическим воздействием, для того, чтобы используя это преимущественно обратимое воздействие, избежать возможных необратимых эффектов более массивной деструкции.

Микрополяризация казалась первоначально идеальным модулирующим воздействием. Она не поколебала в этом плане своего реноме - она действительно может очень мягко и локально влиять на состояние нервной ткани. Однако более чем при какомлибо другом методе электрического воздействия при внутримозговой микрополяризации необходима возможность воздействия не только на одну, а на несколько на расстоянии друг от друга расположенных точек мозга. Это связано с тем, что, почти физиологично изменяя состояние структуры мозга, микрополяризация вызывает к жизни одно из основных свойств мозга как целого - лишь только изменяется состояние одной его зоны, более или менее быстро развивается общая его перестройка. Эта перестройка, улавливаемая по медленным электрическим процессам и другим физиологическим показателям, требует для достижения желаемого эффекта микрополяризации различных точек.

Важным свойством микрополяризационного воздействия является и его своеобразная способность при некоторой длительности воздействия вызывать и местный, развивающийся во времени эффект. Такое развитие первоначально местного эффекта, а затем и распространение его наблюдается, как указывалось, обычно при воздействии более сильным постоянным током - макрополяризации. При макрополяризации местный и распространяющийся эффекты оказываются настолько выраженными, что их можно выявить, не прибегая к регистрации медленных электрических процессов: пространственную динамику отражает медленноволновая активность и на ЭЭГ. В случае если важно уточнить и количественную сторону эффекта, целесообразно ориентироваться на медленные процессы. Как указывалось выше, далеко не просто ответить на вопрос о физиологической сущности эффекта импульсной электрической стимуляции. С этой целью рекомендовалось использовать физиологические показатели состояния мозга. Дополнительные сведения могут быть получены при сопоставлении эффектов импульсного электрического воздействия и воздействия слабым постоянным током и путем анализа изменения физиологических показателей в этих условиях.

Эта проблема - проблема оценки физиологической природы явления, которое мы вызываем в мозгу, несомненно интересует клиницистов, решающих на основе результатов предварительных электрических воздействий, делать или не делать деструкцию (электролизис), продолжать ли электрическую стимуляцию или.

Очень нередкая в клинике ситуация. Электрическая стимуляция зоны «X» дает тот же клинический эффект, что и макрополяризация, заведомо вызывающая в неэпилептизированном мозгу угнетение. По аналогии остается предположить, что и стимуляция вызвала угнетение (торможение) нервной ткани под электродом! Дальнейшие действия в клинике основываются на характере эффекта с учетом

состояния нервной ткани, его вызывавшего. А если не было поляризации? Что же - разрушать зону либо, наоборот, всемерно оберегать ее? Или продолжать стимулировать для получения лечебного эффекта?

На основе подтвердившихся и подтверждающихся представлений о роли устойчивого патологического состояния в патогенезе хронических заболеваний и значении в переходе к новому состоянию фазы дестабилизации основным критерием в клинике для дальнейших действий следует считать развитие колебаний симптомов заболевания (при гиперкинезах - мышечного тонуса, тремора) - степень дестабилизации их. Но критерий плюс-, минус-реакции (усиление или угнетение болезненных проявлений) в клинике при электрических воздействиях не отпал, а потому очень важно знать, что же действительно происходит в результате этих воздействий в точке их приложения, на расстоянии и во всем мозгу. Здесь в связи с этими положениями и рассуждениями и прежде всего как поводы для дискуссии целесообразно привести два рода достаточно недавно полученных результатов.

1. Электрическая стимуляция была применена при поражениях спинного мозга у наиболее сложно поддающегося терапии контингента больных. Оказалось, что эффект стимуляции зависит в этом случае от мощности подаваемого тока, определяясь его интенсивностью, частотой и длительностью импульсов лишь при «прочих равных условиях» (Гурчин и др., 1986). А так же ли обстоит дело при стимуляции головного мозга? Нерва?

2. Повторные лечебные электрические стимуляции положительных эмоциогенных зон у больных эпилепсией приводили к подавлению (угнетению? торможению?) большого количества разных собственно мозговых и организменных проявлений, наблюдавшихся при первых стимуляциях этих зон, и увеличению количества зон в мозгу, стимуляция которых вызывала положительный эмоциональный эффект (Бехтерева, Камбарова, 1984а). Как такого рода факты смотрятся с позиций физиологов, применяющих электрическую стимуляцию, в том числе повторную, как основной прием исследования?

По обеим этим позициям можно было бы привести ряд соображений, но, может быть, целесообразнее отложить это до времен более полной интеграции данных, полученных у человека и в эксперименте у животных...

Проблема электрических воздействий на мозг обсуждается и с физико-химической стороны в плане рассмотрения тех возможных молекулярных перестроек, которые развиваются под действием тока и других раздражителей в клетках мозговой ткани (Воронцов, 1961а, 19616; Гречин, 1976; Хон, 1976). Это, существенно расширяя возможности физиологического анализа процессов, повышает вероятность его дальнейшей оптимизации.

По разным поводам в данной главе постоянно упоминаются возможности комплексного метода. Они действительно очень велики, хотя именно при сопоставлениях данных о структурнофункциональной организации больного мозга, полученных в результате исследования его физиологических процессов при адекватной и электрической стимуляции, были отмечены первоначально не всегда ясные расхождения. Так, электрическая стимуляция какой-то зоны мозга могла приводить к эффектам в двигательной сфере. Ивто же время ни пассивные, ни активные движения больного не сопровождались воспроизводимыми изменениями физиологических показателей мозга в той же зоне (Бехтерева и др., 1975а, 1977в). Первоначально казалось, что периферическая реакция на электрическое воздействие, вероятно, развивалась за счет дистантного эффекта. Этого действительно никогда нельзя исключить. Однако при варьировании интенсивности электрического тока расхождение между реакцией на электрический и адекватный стимул нередко сохранялось. Подобное явление имеет, очевидно, не только одно объяснение. На второе место после указанного выше можно уверенно поставить связь его с метаболическими перестройками, вызванными болезнью мозга.

Впервые этот феномен был обнаружен при одной из длительно текущих болезней мозга - паркинсонизме, заболевании, важнейшим фактором в патогенезе которого является нарушение биохимической медиации в мозгу, ведущее к функциональному выключению структуры как звена системы обеспечения определенной деятельности. Дофаминовый дефицит угнетает или выключает важнейшие звенья системы обеспечения движений. Движение - естественный проприоцептивный раздражитель - не включает данное звено в работу. А электрическая стимуляция вызывает к жизни реакции, свойственные структуре в норме, которые могут восстанавливаться при нормализации биохимической медиации, что еще раз подчеркивает важность многостороннего подхода для получения достоверных сведений о состоянии мозговых образований. В связи с этим возникает и другой вопрос. Факты, которыми оперирует теперь нейрофизиология человека, в подавляющем большинстве получены при исследовании больного мозга. В какой мере они приложимы к здоровому мозгу?!

Представим себе, что на основе любого из приведенных выше физиологических подходов получены данные о мозговом обеспечении интеллектуально-мнестических функций и движений у психически сохранных больных паркинсонизмом. При достаточном числе исследований данные о структурно-функциональном обеспечении интеллектуально-мнестической деятельности могут быть приняты за основу для дальнейших исследований. Естественно, весьма желательно провести аналогичные исследования у больных с другими заболеваниями и сопоставить полученные данные. Иначе обстоит дело с результатами изучения структурно-функционального обеспечения движений у больных паркинсонизмом, так как двигательная сфера у них страдает очень существенно. В связи с наличием расстройств вегетативной сферы при паркинсонизме необходимо осторожно оценивать и данные о мозговом обеспечении вегетативных реакций. Даже очень большое количество исследований у значительного числа больных, страдающих одним заболеванием, хотя и внесет некоторую коррекцию в оценку результатов, далеко не решит вопроса полностью.

Среди многих представлений о патогенезе паркинсонизма по крайней мере два их элемента выдерживают проверку временем - представление о гиперфункции холинергической медиации и гипофункции дофаминергической - в той степени, в какой эта медиация обслуживает структуры мозга, имеющие отношение к двигательной сфере. На этой основе базируется практически все фармакологическое лечение паркинсонизма. Далеко не полный успех этого лечения и соответственно необходимость вводить в фармакологические противопаркинсонические препараты дополнительные компоненты свидетельствуют о том, что биохимический профиль паркинсонизма не может быть сведен к нарушениям указанных двух систем. Это обнаруживается и при направленном изучении отражения мозгового медиаторного обмена этих больных способом исследования продуктов распада медиаторов в биохимических жидкостях. Так, уже получены данные об изменениях пептидного спектра ликвора и крови у больных паркинсонизмом (Бехтерева и др., 19846). Не исключено, что дальнейшие более тонкие биохимические и молекулярнобиологические исследования вскроют существенное патогенетическое звено этого заболевания, способствуя тем самым повышению эффективности фармакологического лечения. Однако и в этом случае останется действенной возможность некоторой коррекции нарушений двигательной сферы у больных паркинсонизмом с помощью холинолитических и дофаминергических препаратов.

Далее, при судорожных формах эпилепсии в бессудорожный период нарушения в двигательной сфере могут отсутствовать. Однако нет оснований предполагать идентичность организации мозговой системы обеспечения движений в норме и при эпилепсии. Изменения биохимической медиации при эпилепсии не однотипны, имеется множество их вариантов, так же как и вариантов клинических проявлений эпилепсии. В. К. Поздеев выделил пять типов этих нарушений (Бехтерева и др., 1978). Некоторые из них противоположны, что свидетельствует о неправомерности общего подхода к лечению. Принципиально такая же проблема встает при проведении исследований у больных с нарушениями эмоциональной сферы: полученные при этом данные мозговой структурно-функциональной и нейрофизиологической организации системы обеспечения эмоций не могут быть без коррекции учтены для суждения о механизмах мозгового обеспечения этих функций в норме.

Таким образом, с одной стороны, именно с развитием стереотаксической техники появились уникальные возможности исследовать тончайшие механизмы мозга в условиях прямого контакта с различными его зонами у больных. Получаемые данные дают ценнейшие материалы для суждения о механизмах больного мозга, а некоторые закономерности в связи с сохранностью определенных функций у этой категории больных и корректностью анализа вполне могут быть экстраполированы на здоровый мозг. Но не все. Очень многие данные относятся прежде всего к больному мозгу и нуждаются в дополнительной проверке для того, чтобы их можно было использовать для суждения о механизмах здорового мозга. Одним из приемов проверки может быть, как уже указывалось, сравнение данных, получаемых при обследовании разных больных, другим - широко распространенные и имеющие большое клиническое значение фармакологические пробы. В данном случае им является применение фармакологических проб в рамках комплексного метода при регистрации физиологических показателей мозга, клинических проявлений и биохимической динамики, отражающей целесообразность применяемых препаратов (приближение или отдаление от нормы в этих условиях) и соответствие их дозировки.

Фармакологические пробы применяются в клинике давно, причем назначение их может быть самым различным. Так, ряд препаратов, и в первую очередь коразол (метразол), используется для уточнения очага (очагов) эпилептогенеза и степени эпилептогенности мозга. Фармакологические пробы служат для уточнения состояния биохимической медиации - ее избыточности или, наоборот, недостаточности. Таким образом, в общей форме они способствуют диагностике и создают предпосылки для оптимизации фармакологического лечения. Во многих работах обсуждались принципы и конкретные формы применения угнетающих и активирующих биохимическую медиацию препаратов (Бехтереваи др., 1965, 1978; Бехтерева, 1971,

1974) . Однако здесь важно подчеркнуть несомненную ценность фармакологических проб не только для уточнения места и характера биохимического полома в центральной нервной системе, но и для изучения механизмов здорового мозга, а также сегодняшних границ этих возможностей, которые, очевидно, завтра будут расширены.

Для того чтобы уточнить, в какой мере выражен и каким препаратом может быть оптимально скомпенсирован весьма вероятный избыток холинергических медиаторов при паркинсонизме, больному вводятся холинолитические средства, а затем в течение определенного периода регистрируют физиологические показатели мозга (причем у больного с вживленными электродами - многие физиологические показатели). Можно ли при первой же фармакологической пробе именно по физиологическим показателям сказать, что у данного больного произошла их нормализация? Об этом первоначально лучше всего судить по ЭЭГ, как правило, исходно измененной у этих больных.

Однако, как вполне понятно, в этом случае можно будет говорить лишь о направленности сдвига. Динамика остальных физиологических показателей в этих условиях вначале скорее исследуется, чем используется как свидетельство нормализации. Регистрация СМФП и ИАН дает возможность и качественной и количественной характеристики развивающихся в различных зонах мозга под влиянием фармакологических средств перестроек. В сопоставлении с ЭЭГ эти данные могут оцениваться как проявление тенденции к нормализации или, напротив, ухудшению функционального состояния структуры.

Что же является основным критерием характера влияния фармакологических проб? По-видимому, при исследованиях, проводимых у больных, об этом в первую очередь следует судить по клиническим проявлениям и данным биохимических исследований,

какими бы совершенными ни казались другие методы оценки состояния. У больных паркинсонизмом измерение мышечного тонуса и регистрация тремора могут наиболее наглядно свидетельствовать о качественной стороне развивающихся сдвигов. Биохимические данные, результаты исследования экскреции продуктов распада мозговых биохимических медиаторов характеризуют качественную и количественную стороны развивающихся в мозгу перестроек. Именно эти показатели вместе с клиническими данными смогут свидетельствовать в пользу нормализации или ухудшения состояния мозга, что позволит оценить изменения физиологических процессов в различных зонах мозга и, естественно, в первую очередь тех, которые в наибольшей мере зависимы от данного типа биохимической медиации.

Предположим, клинические и биохимические данные указывают на нормализацию холинергической медиации в преимущественно холинергических структурах у больного паркинсонизмом. Что явится в этих исследованиях важнейшим этапом уже для суждения о структурно-функциональной организации движений в здоровом мозгу? Пространственная организация реакций различных зон мозга на двигательные пробы, регистрируемая по воспроизводимой динамике физиологических показателей?

Однако применен холинолитический препарат. Гиперактивность холинергических структур снижена. Но остаются другие нарушения, и в частности дефицит дофаминергической медиации. Что же, можно остановиться на первом этапе - скажем условно - нормализации преимущественно холинергических зон? Нет, конечно. И проводится новый ряд фармакологических проб, в первую очередь компенсирующих дофаминергическую медиацию со всеми теми же принципами оценки эффекта. Так шаг за шагом подбирается наилучшее фармакологическое лечение больных паркинсонизмом. И также постепенно накапливаются данные о мозговой системе организации движений, приближенной к норме.

Однако, если стремиться получить сведения именно о мозговой организации системы обеспечения движений, недостаточно проводить исследования даже по очень расширенной схеме только при паркинсонизме. Необходимо иметь аналогичные данные и при других заболеваниях мозга. И что же, в этом новом случае будет полностью приемлема приведенная выше схема? Здесь при применении фармакологических препаратов с диагностической целью роль биохимического контроля останется по-прежнему важной. А вот ценность клинических показателей будет зависеть от степени их постоянства в картине болезни, тогда как значение физиологических параметров определится их выразительностью. Так, если речь пойдет об эпилепсии, хорошим контролем действия фармакологических проб наряду с биохимическими показателями окажутся ЭЭГ и ее производные - ЭКоГ и ЭСКоГ - и динамика СМФП. Клинические данные могут быть использованы лишь при провокации припадка или выраженных эмоционально-психических проявлениях, так как введение препарата, компенсирующего биохимические нарушения, чаще всего не вызовет в межприступном периоде видимых клинических проявлений. При

психических заболеваниях с устойчивой клиникой психопатологических нарушений вновь наряду с биохимическими выступят на первый план клинические, а не электрофизиологические показатели.

Об этих, казалось бы ясных, вопросах здесь говорится по двум причинам. Во- первых, чтобы подчеркнуть принципиальную возможность получения при исследовании больного мозга данных, пригодных для суждения о здоровом мозге, и показать типовые пути решения этого вопроса, различные при разных заболеваниях. Во-вторых - и это очень важно именно для перспектив изучения здорового мозга - не просто подчеркнуть значение, но и показать место многоплановых физиологических исследований при фармакологических корригирующих пробах. Те физиологические данные и прежде всего динамика медленной электрической и импульсной активности нервных клеток, которые сейчас характеризуют функциональное состояние мозга в этих условиях, завтра, тогда, когда будут получены биоэлектрические характеристики нормального состояния различных структур мозга и его вариаций, начнут использоваться для контроля за состоянием мозга. Эта перспектива вполне реальна, и, поскольку безусловно (к счастью!) не будут проводиться исследования здорового мозга с помощью вживленных электродов, углубление и расширение сведений о физиологических характеристиках различных зон мозга имеет большое теоретическое и практическое значение.

В отношении фармакологических проб можно было бы сказать еще очень много. С учетом исключительно быстрого развития нейрофармакологии спектр этих проб, применяемых в клинике, не только может, но и должен быть расширен потому, что при правильной организации исследования они дают исключительно важные и для диагностики, и для лечения результаты. При возросших возможностях коррекции нарушений обмена не только классических биохимических медиаторов, аминокислот, но и других биологически активных веществ (здесь речь пойдет прежде всего и о пептидах) возможности использования полученных у больных данных для суждения о механизмах здорового мозга будут возрастать.

Заканчивая эту главу, следует, по-видимому, подчеркнуть еще одно обстоятельство, имеющее теоретическое обоснование и объяснение. Как это ни парадоксально, не всегда, но в очень многих случаях наиболее близкие к норме данные о структурнофункциональной организации мозговых систем могут быть получены именно в условиях фармакологических проб или после курса эффективного фармакологического лечения. В начале даже рационально обоснованного фармакологического лечения могут развиваться внутримозговые перестройки, отражающие фазу дестабилизации устойчивого патологического состояния и включения механизмов, его поддерживающих, что, естественно, очень важно в первую очередь для познания механизмов не здорового, а больного мозга и нейрофизиологических путей преодоления устойчивого патологического состояния. Материал, изложенный в настоящей главе, даже в тех случаях, когда разбираются вполне конкретные примеры, не должен рассматриваться в качестве чего-то близкого к рецептурному справочнику или методическому руководству. Поводом к написанию этого раздела послужило стремление осветить некоторые сегодняшние и завтрашние возможности в изучении мозга человека и подчеркнуть принципиально важные аспекты этого направления.

Глава вторая Некоторые общие принципы организации мозга человека

почему человек потерял множество органов и функций, служивших его более или менее отдаленным предкам.

И. И. Мечников

В эволюции человека преобладает сильное развитие мозга и умственных способностей. Вот

Наши рекомендации