Концептуальная модель (КМ) производства.
Модель является базисом для построения прогнозирующей модели. В состав ее входит: совокупность эвристических правил на множестве факторов, оказывающих непосредственное или опосредованное влияние как на условия протекания процесса, так и на сам процесс. Факторы условно делятся на описатели и действия. Описателями названа группа факторов, характеризующих различные аспекты процесса. Действиями названы факторы, способные изменить состояние процесса. Однако следует отметить, что существует целый ряд факторов, однозначно не классифицируемых.
Каждое правило в общем случае представляет совой эвристическую зависимость следующего вида:
Если <фактор-1> = <значение-1> И <фактор-2> = <значе-ние-2> И..
Тогда <фактор - следствие) = (увеличивается/уменьшается)
ДОСТОВЕРНОСТЬ (число из диапазона 0...100>
Каждому такому правилу приписывается некоторый вес (число в диапазоне 0... 100), означающий степень уверенности экспертов в реальном существовании и действенности данного правила. Конкретные веса всех правил в модели определяются методом опроса экспертов и уточняются в процессе отладки модели и эксплуатации системы.
Последними из рассматриваемых компонентов КМ производства являются показатели стабильности факторов-описателей, измеряемые числом из диапазона 0 ... 100 и показывающие, какой процент от начального уровня будет составлять уровень данного фактора в конце периода прогнозирования при отсутствии всех влияющих воздействий. Так, значение стабильности 80% означает, что уровень данного фактора к концу прогнозируемого периода будет составлять 80% уровня в начале периода при отсутствии всех влияющих воздействий.
Для формализации знаний о процессе за основу взята модель, описанная выше. Все правила делятся на два типа: повышающие и понижающие уровень фактора-следствия. Если правила сгруппировать по факторам-следствиям, то получим пакеты правил, являющиеся подмоделями исходной модели и описывающие динамику одного конкретного фактора в зависимости от других факторов. Примером пакета правил может служить совокупность правил, влияющих на ритмичность работы подсистемы сборки агрегатов.
Для выполнения операций увеличения и уменьшения необходимо каждому фактору поставить в соответствие непрерывное или дискретное множество значений. В системе в качестве метрики для всех факторов выбран непрерывный интервал 0 ... 100. Такое шкалирование легко воспринимается экспертами как естественная (процентная) шкала. Однако экспертам-авторам знаний и экспертам-пользователям (поставщикам исходной информации) зачастую бывает удобно пользоваться лингвистическими значениями типа «мало», «много», «около...» и т. д. Для манипулирования подобными значениями предложено строить функции принадлежности на том же универсальном множестве [0, 100].
При прогнозировании развития ситуации по одному из факторов (т. е. при учете одного пакета правил), как уже было сказано выше, существуют причины, повышающие уровень данного фактора, и причины, понижающие его уровень. В связи с этим в системе использован механизм порождения гипотез двух типов: гипотезы о повышении уровня данного фактора и гипотезы о понижении его уровня. Каждая гипотеза во время своего возникновения (при условии наличия причин, порождающих эту гипотезу) имеет степень своей истинности, зависящую от степени выполнения порождающих причин, т. е. степени «срабатывания» данных правил. Значения истинности вырабатываются на непрерывной шкале [0, 1]; 0 - абсолютно ложно, 1 - абсолютно истинно.
Например, существует правило, что выход из строя линии механической обработки (без наличия резервных мощностей) уменьшает выход собранных агрегатов в подсистеме сборки агрегатов, причем достоверность этого правила равна 60%. Пусть далее в качестве исходной информации задано, что уровень выхода из строя одной из линий механической обработки равен 70. Тогда будет порождена гипотеза об увеличении уровня ситуации, связанной с уменьшением выхода собранных агрегатов со степенью истинности
60070/100(%)=42%=0,42.
Для вычисления итогового прогнозируемого уровня в системе используются две формулы учета гипотез. Первая формула эквивалентна формуле условной вероятности Шортлиффа, с ее помощью осуществляется пересчет итогового прогнозируемого уровня для гипотез, повышающих уровень данного фактора:
С=С0+е*(100-С0) (7.1)
Здесь Со — текущий уровень (из интервала [0, 100]); е — степень истинности очередной гипотезы (из интервала [0, 1]); С — результирующий уровень (из интервала [0, 100]).
Аналогично для гипотез, понижающих уровень данного фактора, используется формула
С=С0*(1-е) (7.2)
Как видно из приведенных выше формул, они не взаимно симметричны в том смысле, что в зависимости от порядка, в котором эти две формулы применяются, результат будет различным. Для учета этой асимметрии все связи из пакета правил, повышающие уровень данного фактора, «активизируются» раньше связей, понижающих его уровень. Таким образом, в начале порождаются все гипотезы о повышении (и действует формула (7.1)), затем — все гипотезы о понижении (и действует формула (7.2)).
Итак, каждый пакет правил имеет четыре компонента: 1) правило, отражающее самодинамику фактора-следствия (стабильность); 2) группу правил, порождающих гипотезы об увеличении уровня фактора-следствия; 3) группу правил, порождающих гипотезы об уменьшении уровня фактора-следствия; 4) два правила, содержащих формулы учета гипотез (7.1) и (7.2).