Оценка центральной тенденции

Если распределения для контрольной группы и для фоновых значе­ний в опытной группе более или менее симметричны, то значения, получаемые в опытной группе после воздействия, группируются, как уже говорилось, больше в левой части кривой. Это говорит о том, что после употребления марихуаны выявляется тенденция к ухудшению показате­лей у большого числа испытуемых.

Для того чтобы выразить подобные тенденции количественно, ис­пользуют три вида показателей моду, медиану и среднюю.

1. Мода (Мо)-это самый простой из всех трех показателей. Она соответствует либо наиболее частому значению, либо среднему значе­нию класса с наибольшей частотой. Так, в нашем примере для экспери­ментальной группы мода для фона будет равна 15 (этот результат встречается четыре раза и находится в середине класса 14-15-16). а после воздействия - 9 (середина класса 8-9-10).

Мода используется редко и главным образом для того, чтобы дать общее представление о распределении В некоторых случаях у распреде­ления могут быть две моды; тогда говорят о бимодальном распределе­нии. Такая картина указывает на то, что в данном совокупности имеются две относительно самостоятельные группы (см., например, данные Триона, приведенные в документе 3.5).

Оценка центральной тенденции - student2.ru

Бимодальное распределение

2. Медиана (Me) соответствует центральному значению в последова­тельном ряду всех полученных значений. Так, для фона в эксперимен­тальной группе, где мы имеем ряд

10 11 12 13 14 14 15 15 15 15 17 17 19 20 21,

медиана соответствует 8-му значению, т.е. 15. Для результатов воздей­ствия в экспериментальной группе она равна 10.

В случае если число данных и, четное, медиана равна средней арифметической между значениями, находящимися в ряду на и/2-м и п/2 + 1-м местах. Так, для результатов воздействия для восьми юношей опытной группы медиана располагается между значениями. находящимися на 4-м (8/2 = 4) и 5-м местах в ряду. Если выписать весь

Статистика и обработка дачных 287

ряд для эгих данных, а именно

7 8 9 11 12 13 14 16,

то окажется, что медиана соответствует (11 + 12)/2 = 11,5 (видно.^что медиана не соответствует здесь ни одному из полученных значении).

3 Средняя арифметическая (М) (далее просто «средняя») - это наибо­лее часто используемый показатель центральной тенденции. Ее приме­няют, в частности, в расчетах, необходимых для описания распределения и для его дальнейшего анализа. Ее вычисляют, разделив сумму всех значений данных на число этих данных. Так, для нашей опытной группы она составит 15,2(228/15) для фона и 11,3(169/15) для результатов

воздействия.

Если теперь отметить все эти три параметра на каждой из кривых для экспериментальной группы, то будет видно, что при нормальном расп­ределении они более или менее совпадают, а при асимметричном

распределении - нет.

Прежде чем идти дальше, полезно будет вычислить все эти показате­ли для обеих распределений контрольной группы-они пригодятся нам в дальнейшем:

Оценка центральной тенденции - student2.ru

9 10 11 12131415161718192021222324Фон

Mo=15 Me =15 М=15,2

Оценка центральной тенденции - student2.ru

После воздействия

Мо=9 Ме=10 М=11.3

288 Приложение Б

Оценка разброса

Как мы уже отмечали, характер распределения результатов после воздействия изучаемого фактора в опытной группе дает существенную информацию о том, как испытуемые выполняли задание. Сказанное относится и к обоим распределениям в контрольной группе:

Контрольная группа Мода (Мо) Медиана (Me) Средняя М\)

Ф°": ............ ............ ............

После воздействия: ............ ............ ............

Оценка центральной тенденции - student2.ru

Оценка центральной тенденции - student2.ru

8 9 10 11 12 1314 1516 171819 2021 22232425 После воздействия

Сразу бросается в глаза, что если средняя в обоих случаях почти одинакова, то во втором распределении результаты больше разбросаны, чем в первом. В таких случаях говорят, что у второго распределения больше диапазон, или размах вариаций, т. е. разница между максималь­ным и минимальным значениями.

Так, если взять контрольную группу, то диапазон распределения для фона составит 22 — 10 = 12, а после воздействия 25 — 8 = 17. Это позво­ляет предположить, что повторное выполнение задачи на глазодвига-тельную координацию оказало на испытуемых из контрольной группы определенное влияние: у одних показатели улучшились, у других ухуд­шились1. Однако для количественной оценки разброса результатов

' Здесь мог проявиться зффект п.шцебо, связанный с тем. что запах дыма травы вызвал у испытуемых уверенность в том, что они находятся под воз­действием наркотика. Для проверки этого предположения следовало бы повто­рить эксперимент со второй контрольной группой, в которой испытуемым будуг 1;|вать только обычную сигарету.

относительно средней в том или ином распределении существуют более точные методы, чем измерение диапазона.

Чаще всего для оценки разброса определяют отклонение каждого из полученных значений от средней (М-М), обозначаемое буквой d, а затем вычисляют среднюю арифметическую всех этих отклонений. Чем она больше, тем больше разброс данных и тем более разнородна выборка. Напротив, если эта средняя невелика, то данные больше сконцентриро­ваны относительно их среднего значения и выборка более однородна.

Итак, первый показатель, используемый для оценки разброса,-это среднее отклонение. Его вычисляют следующим образом (пример, кото­рый мы здесь приведем, не имеет ничего общего с нашим гипотетиче­ским экспериментом). Собрав все данные и расположив их в ряд

356911 14, находят среднюю арифметическую для выборки:

3+5+6+9+11+14 48

__————^———————=^=8.

Затем вычисляют отклонения каждого значения от средней и сумми­руют их:

-5 -3 -2 +1 +3 +6 (3 - 8) + (5 - 8) + (6 - 8) + (9 - 8) + (11 - 8) + (14 - 8).

Однако при таком сложении отрицательные и положительные отклоне­ния будут уничтожать друг друга, иногда даже полностью, так что результат (как в данном примере) может оказаться равным нулю. Из этого ясно, что нужно находить сумму абсолютных значений индиви­дуальных отклонений и уже эту сумму делить на их общее число. При этом получится следующий результат:

среднее отклонение равно 53213 |3-8|+|5-8[+|6-8|+|9-8|+|11 -8|+ 14^8! 20 ззз
б 33'3-

Общая формула:

2^| п

Среднее отклонение =

где Т. (сигма) означает сумму; | d\ - абсолютное значение каждого инди­видуального отклонения от средней; и-число данных.

Однако абсолютными значениями довольно трудно оперировать в алгебраических формулах, используемых в более сложном статистиче­ском анализе. Поэтому статистики решили пойти по «обходному пути», позволяющему отказаться от значений с отрицательным знаком, а имен­но возводить все значения в квадрат, а затем делить сумму квадратов на

Приложение Б

число данных. В нашем примере это выглядит следующим образом:

(_5)2 + (-З)2 + (-2)2 + (+1)2 + (+3)2 + (+6)2 _

6 _25+9+4+1+9+36_84_

6 - 6 ~ '

В результате такого расчета получают так называемую вариансу1 Формула для вычисления вариансы, таким образом, следующая:

Варианса -=•

Наконец, чтобы получить показатель, сопоставимый по величине со средним отклонением, статистики решили извлекать из вариансы квад­ратный корень. При этом получается так называемое стандартное отклонение:

Стандартное отклонение =

В нашем примере стандартное отклонение равно ^14 = 3,74.

Следует еще добавить, что для того, чтобы более точно оценить стандартное отклонение для малых выборок (с числом элементов менее 30), в знаменателе выражения под корнем надо использовать не п, an—I:

Оценка центральной тенденции - student2.ru

Вернемся теперь к нашему эксперименту и посмотрим, насколько полезен оказывается этот показатель для описания выборок.

На первом этапе, разумеется, необходимо вычислить стандартное

* Варианса представляет собой один из показателей разброса, используемых в гекоторых статистических методиках (например, при вычислении критерияF,<.м. следующий раздел). Следует отметить, что в отечественной литературе вариансу часто называют дисперсией. -Прим. перед.

* Стандартное отклонение для популяции обозначается маленькой греческой буквой сигм! (ст), а для выборки - буквой s. Это касается и вариансы, т.е кзадрага стандартного отклонения, для популяции она обозначается ет2, а для выборки s2.

Статистика и обработка данных

отклонение для всех четырех распределений. Сделаем это сначала для фона опытной группы:

Наши рекомендации