Доклад на тему: «Метод анализа иерархий».
Пример задачи многокритериального выбора с простейшей иерархией. В данной задаче необходимо выбрать из трех кандидатов одного на должность руководителя. Кандидаты оцениваются по критериям: возраст, опыт, образование и личные качества. На рисунке показана иерархия для этой задачи. Простейшая иерархия содержит три уровня: цель, критерии и альтернативы. Числа на рисунке показывают приоритеты элементов иерархии с точки зрения цели, которые вычисляются в МАИ на основе парных сравнений элементов каждого уровня относительно связанных с ними элементами вышерасположенного уровня. Приоритеты альтернатив относительно цели (глобальные приоритеты) вычисляются на заключительном этапе метода путем линейной свертки локальных приоритетов всех элементов. В данном примере лучшим кандидатом является Дик, так как имеет максимальное значение глобального приоритета.
Метод Анализа Иерархий (МАИ) — математический инструмент системного подхода к сложным проблемам принятия решений. МАИ не предписывает лицу, принимающему решение (ЛПР), какого-либо «правильного» решения, а позволяет ему в интерактивном режиме найти такой вариант (альтернативу), который наилучшим образом согласуется с его пониманием сути проблемы и требованиями к ее решению. Этот метод разработан американским математиком Томасом Саати, который написал о нем книги, разработал программные продукты и в течение 20 лет проводит симпозиумы ISAHP (англ. International Symposium on Analytic Hierarchy Process). МАИ широко используется на практике и активно развивается учеными всего мира. В его основе наряду с математикой заложены и психологические аспекты. МАИ позволяет понятным и рациональным образом структурировать сложную проблему принятия решений в виде иерархии, сравнить и выполнить количественную оценку альтернативных вариантов решения. Метод Анализа Иерархий используется во всем мире для принятия решений в разнообразных ситуациях: от управления на межгосударственном уровне до решения отраслевых и частных проблем в бизнесе, промышленности, здравоохранении и образовании.
Для компьютерной поддержки МАИ существуют программные продукты, разработанные различными компаниями. Анализ проблемы принятия решений в МАИ начинается с построения иерархической структуры, которая включает цель, критерии, альтернативы и другие рассматриваемые факторы, влияющие на выбор. Эта структура отражает понимание проблемы лицом, принимающим решение. Каждый элемент иерархии может представлять различные аспекты решаемой задачи, причем во внимание могут быть приняты как материальные, так и нематериальные факторы, измеряемые количественные параметры и качественные характеристики, объективные данные и субъективные экспертные оценки [1]. Иными словами, анализ ситуации выбора решения в МАИ напоминает процедуры и методы аргументации, которые используются на интуитивном уровне. Следующим этапом анализа является определение приоритетов, представляющих относительную важность или предпочтительность элементов построенной иерархической структуры, с помощью процедуры парных сравнений. Безразмерные приоритеты позволяют обоснованно сравнивать разнородные факторы, что является отличительной особенностью МАИ. На заключительном этапе анализа выполняется синтез (линейная свертка) приоритетов на иерархии, в результате которой вычисляются приоритеты альтернативных решений относительно главной цели. Лучшей считается альтернатива с максимальным значением приоритета.
Пример задачи многокритериального выбора с простейшей иерархией
В данной задаче необходимо выбрать из трех кандидатов одного на должность руководителя. Кандидаты оцениваются по критериям: возраст, опыт, образование и личные качества. На рисунке показана иерархия для этой задачи. Простейшая иерархия содержит три уровня: цель, критерии и альтернативы. Числа на рисунке показывают приоритеты элементов иерархии с точки зрения цели, которые вычисляются в МАИ на основе парных сравнений элементов каждого уровня относительно связанных с ними элементами вышерасположенного уровня. Приоритеты альтернатив относительно цели (глобальные приоритеты) вычисляются на заключительном этапе метода путем линейной свертки локальных приоритетов всех элементов. В данном примере лучшим кандидатом является Дик, так как имеет максимальное значение глобального приоритета.
Сфера образования и научных исследований
Хотя для практического применения МАИ отсутствует необходимость специальной подготовки, основы метода преподают во многих учебных заведениях . Кроме того, этот метод широко применяется в сфере управления качеством и читается в рамках многих специализированных программ, таких как Six Sigma, Lean Six Sigma, и QFD. Около ста китайских университетов предлагают курсы по основам МАИ, и многие соискатели научных степеней выбирают МАИ в качестве объекта научных и диссертационных исследований. Опубликовано более 900 научных статей по данной тематике. Существует китайский научный журнал, специализирующийся в области МАИ. Раз в два года проводится Международный симпозиум, посвященный МАИ (International Symposium on Analytic Hierarchy Process, ISAHP), на котором встречаются как ученые, так и практики, работающие с МАИ. В 2007 году симпозиум проходил в Вальпараисо, Чили, где было представлено более 90 докладов ученых из 19 стран, включая США, Германию, Японию, Чили, Малайзию, и Непал.
Устройство для удаленного ввода и обработки оценок
Методика применения МАИ
Метод анализа иерархий содержит процедуру синтеза приоритетов, вычисляемых на основе субъективных суждений экспертов. Число суждений может измеряться дюжинами или даже сотнями. Математические вычисления для задач небольшой размерности можно выполнить вручную или с помощью калькулятора, однако гораздо удобнее использовать программное обеспечение (ПО) для ввода и обработки суждений. Самый простой способ компьютерной поддержки — электронные таблицы, самое развитое ПО предусматривает применение специальных устройств для ввода суждений участниками процесса коллективного выбора. Порядок применения Метода Анализа Иерархий:
1. Построение качественной модели проблемы в виде иерархии, включающей цель, альтернативные варианты достижения цели и критерии для оценки качества альтернатив.
2. Определение приоритетов всех элементов иерархии с использованием метода парных сравнений.
3. Синтез глобальных приоритетов альтернатив путем линейной свертки приоритетов элементов на иерархии.
4. Проверка суждений на согласованность.
5. Принятие решения на основе полученных результатов.
Моделирование проблемы в виде иерархии
Первый шаг МАИ — построение иерархической структуры, объединяющей цель выбора, критерии, альтернативы и другие факторы, влияющие на выбор решения. Построение такой структуры помогает проанализировать все аспекты проблемы и глубже вникнуть в суть задачи.