Рекомендуемые усилия на органы управления
Для некоторых видов деятельности иногда отсутствует возможность осуществлять зрительный контроль в процессе двигательного акта. В этом случае большое значение имеют точностные характеристики движений оператора, т. е. возможностей человека по различению (без участия зрительного контроля) направления, размаха, длительности и силы движения. Эти характеристики особенно необходимо учитывать при организации дозированных движений.
Наиболее точные ощущения характерны для движений, совершаемых на расстоянии 15 — 35 см от средней точки тела. Уже на расстоянии 40 — 50 см точность анализа существенно снижается. Точность попадания рукой в нужное место на пульте управления составляет ±15 мсм в средней зоне ниже груди и ±30 мсм в крайних зонах. Точностные характеристики движений определяют также вероятность ошибочных реакций оператора [192]. Этот вопрос более подробно рассмотрен в конце данной главы.
Уменьшению утомляемости и повышению производительности труда способствует соблюдение принципов экономии движений и энергии, основанных на учете физиологических и биомеханических особенностей двигательного аппарата (рис. 14.2).
Рис. 14.2. Принципы экономии движений и усилий.
К принципам экономии движений относят следующие:
• принцип непрерывности, в соответствии с которым каждое последующее движение должно быть естественным продолжением предыдущего;
• принцип параллельности, заключающийся в обеспечении одновременности движений обеих рук, а также рук и ног работающего;
• принцип благоприятных траекторий, предусматривающий возможность симметричных, плавных, круговых, непрерывных движений вместо несимметричных, зигзагообразных, прямолинейных;
• принцип оптимальной интенсивности, обеспечивающий высокую производительность труда при оптимальных значениях физического и нервного напряжений;
• принцип ритмичности, заключающийся в регулярной повторяемости движений через определенные (равные) промежутки времени (наиболее благоприятным является естественный ритм);
• принцип привычности движений, обеспечивающий автоматическое их выполнение, что достигается тренировкой, в результате которой вырабатываются динамические стереотипы действий.
Заканчивая рассмотрение характеристик управляющих движений, необходимо хотя бы кратко сказать об особенностях формирования двигательных навыков. В процессе их формирования изменяются взаимоотношения между видами движений. На первой ступени обычно преобладают гностические движения. Позднее они редуцируются и настолько тесно сливаются с рабочими движениями, что их трудно бывает разделить. В результате движения становятся более плавными и стабильными. На начальных ступенях образование двигательного навыка происходит под контролем зрения; впоследствии же этот контроль все более переходит к чувствительным приборам двигательного аппарата — к тактильному и кинестетическому анализаторам. При этом образуется внутренний контур регулирования, определяемый действием этих анализаторов, в котором сигналы проходят значительно быстрее (0,4 с), чем по внешнему контуру регулирования, включающему зрительный контроль (1 — 2 с). Это важное свойство может быть использовано также для повышения качества управления путем подачи сигналов обратной связи не на зрительный, а непосредственно на тактильный анализатор. Это связано с тем, что знание оператором результатов своих действий (самоконтроль своей работы) является важным средством повышения эффективности труда.
Помимо мануальных действий, как уже отмечалось, в ряде случаев для управления машиной могут использоваться рабочие действия ногами. Обычно они носят вспомогательный характер, однако иногда эти действия оказываются весьма важными (например, управление самолетом, станком, автомобилем и т. п.).
Скорость и точность движений, выполняемых стопой, могут соперничать с некоторыми движениями, выполняемыми руками. Так, временные параметры элементарных движений рукой, встречающихся в операторской деятельности (в частности, «время дотягивания») при расстояниях 150 мм ничуть не меньше, чем время выполнения этих движений стопой; Эксперименты по определению точности приложения статических сил к средствам управления самолетом (рычаги, штурвал) показывают, что точность выполнения операций с помощью ног примерно такая же, как с помощью рук. Силовые возможности ног зачастую выше аналогичных возможностей рук [7].
Биомеханические характеристики нижних конечностей необходимо учитывать при конструировании органов ножного управления (педалей). Основными из них являются антропометрические размеры, массоинерционные, кинематические, силовые и точностные характеристики. Довольно подробно они приведены в работе [7]. Примеры учета их при конструировании педалей приведены в главе XVII.
14.2. Психомоторика оператора
Любому управляющему действию оператора предшествуют те или иные психические процессы. Реализация психической деятельности посредством движений, как отмечалось в главе II, носит название психомоторики. Объективно психомоторика проявляется в психомоторных процессах. Основу их составляют идеомоторные, эмоционально-моторные и сенсомоторные процессы.
Идеомоторные процессы, или идеомоторика (от греч. idea — идея, образ и лат. motor — приводящий в движение) связывают представление о движении с его реальным осуществлением. Эти процессы имеют большое значение при построении мысленных (идеальных) моделей деятельности оператора, при проведении тренировок, решении различного рода «вводных».
Эмоционально-моторные процессы отражают влияние различного рода эмоций на устойчивость двигательных актов. Эмоции могут при определенных условиях вызвать нарушения нормального протекания психомоторных процессов или эмоционально-моторную напряженность. Последняя проявляется в позе, мимике, чрезмерно замедленных движениях, неадекватной нагрузке, усилении ряда вегетативных функций. Для многих видов операторской деятельности профессионально значимым качеством является эмоционально-моторная устойчивость, то есть сохранение профессиональных двигательных навыков в условиях действия экстремальных факторов [128].
Сенсомоторные процессы, или сенсомоторика (от лат. sensus—чувство, ощущение) определяют взаимосвязь сенсорных и моторных (двигательных) компонентов психической деятельности. С помощью этих процессов осуществляется связь восприятия и движения, которая проявляется в виде сенсомоторных реакций или сенсомоторной координации.
Сенсомоторной реакцией называется одиночное (дискретное) движение оператора на появление (прекращение действия) того или иного раздражителя. Изучение сенсомоторных реакций имеет большое значение для инженерной психологии. Это обусловлено следующими причинами. Во-первых, многие виды операторской деятельности в той или иной степени представляют собой совокупность различных видов сенсомоторных реакций. Во-вторых, время реакции может использоваться как один из показателей психофизиологического состояния оператора или готовности его к выполнению определенного вида деятельности. В-третьих, время реакции очень часто используется как индикатор при инженерно-психологических измерениях и исследованиях.
Различают следующие типы сенсомоторных реакций: простая, сложная и реакция на движущийся объект.
Простая сенсомоторная реакция заключается в ответе заранее известным простым одиночным движением на внезапно появляющийся, но заранее известный сигнал. Основной показатель такой реакции — время, которое складывается из двух составляющих: латентного (скрытого) периода и времени моторного акта.
В реальных процессах работы оператора простые сенсомоторные реакции встречаются сравнительно редко. Наиболее характерными являются сложные реакции, в которых требуемое действие оператора зависит от вида и характера поступившего сигнала. Например, каждому из сигналов соответствует включение своего тумблера. При анализе сложных реакций необходимо иметь в виду, что движения в той или иной степени осуществляются под контролем зрительной системы. Многие элементы программы двигательного акта формируются еще до начала движения, по отношению к которому зрительная система выступает в роли задающего устройства. Таким образом, сенсорная и моторная компоненты времени реакции (ВР) имеют на оси времени общий участок (на рис.; 14,3 он обозначен штриховкой). Это означает, что в это время начинают работать несколько параллельных уровней регуляции [116].
Рис. 14.3. Соотношение между различными компонентами сенсомоторной реакции: ЛП — латентный период; ВД — время движения.
При изучении управляющих движений большое значение имеет анализ ошибочных реакций оператора. Наиболее полно и систематично этот вопрос рассмотрен в работе [192]. Установлено, например, что число ошибок существенно зависит от вида и направления движения (табл. 14.5).
Таблица 14.5