Непараметрические критерии

Критерии, не включающие в формулу расчета параметров распределе­ния и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий Т Вилкоксона и др.)

И те, и другие критерии имеют свои преимущества и недостатки. На основании нескольких руководств можно составить таблицу, позво­ляющую оценить возможности и ограничения тех и других (Рунион Р., 1982; McCall R., 1970; J.Greene, M.D'Olivera, 1989).

Таблица 1.1

Возможности и ограничения параметрических и непараметрических критериев

ПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ НЕПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ
1. Позволяют прямо оценить различи* в средних, полученных в двух вы­борках (t - критерий Стьюдента). Позволяют оценить лишь средние тенден­ции, например, ответить на вопрос, чаще ли в выборке А встречаются более высо­кие, а в выборке Б - более низкие значе­ния признака (критерии Q, U, φ* и др.).
2. Позволяют прямо оценить различия в дисперсиях (критерий Фишера). Позволяют оценить лишь различия в диа­пазонах вариативности признака (критерий φ*).
3. Позволяют выявить тенденции изме-нения признака при переходе от ус­ловия к условию (дисперсионный однофакторный анализ), но лишь при условии нормального распреде­ления признака. Позволяют выявить тенденции изменения признака при переходе от условия к усло­вию при любом распределении признака (критерии тенденций L и S).
4. Позволяют оценить взаимодействие двух и более факторов в их влиянии на изменения признака (двухфакторный дисперсионный анализ). Эта возможность отсутствует.
5. Экспериментальные данные должны отвечать двум, а иногда трем, усло­виям: а) значения признака измерены по интервальной шкале; б) распределение признака является нормальным; в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейках комплекса. Экспериментальные данные могут не от­вечать ни одному из этих условий: а) значения признака могут быть пред­ставлены в любой шкале, начиная от шка­лы наименований; б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения необязательно и не нуждается в проверке; в) требование равенства дисперсий отсут­ствует.
6. Математические расчеты довольно сложны. Математические расчеты по большей час­ти просты и занимают мало времени (за исключением критериев χ2и λ).
7. Если условия, перечисленные в п.5, выполняются, параметрические кри­терии оказываются несколько более мощными, чем непараметрические. Если условия, перечисленные в п.5, не выполняются, непараметрические критерии оказываются более мощными, чем пара­метрические, так как они менее чувстви­тельны к "засорениям'.

Из Табл. 1.1 мы видим, что параметрические критерии могут оказаться несколько более мощными[5], чем непараметрические, но толь­ко в том случае, если признак измерен по интервальной шкале и нор­мально распределен. С интервальной шкалой есть определенные про­блемы (см. раздел "Шкалы измерения"). Лишь с некоторой натяжкой мы можем считать данные, представленные не в стандартизованных оценках, как интервальные. Кроме того, проверка распределения "на нормальность" требует достаточно сложных расчетов, результат кото­рых заранее неизвестен (см. параграф 7.2). Может оказаться, что рас­пределение признака отличается от нормального, и нам так или иначе все равно придется обратиться к непараметрическим критериям.

Непараметрические критерии лишены всех этих ограничений и не­требуют таких длительных и сложных расчетов. По сравнению с пара­метрическими критериями они ограничены лишь в одном - с их помо­щью невозможно оценить взаимодействие двух или более условий или факторов, влияющих на изменение признака. Эту задачу может решить только дисперсионный двухфакторный анализ.

Учитывая это, в настоящее руководство включены в основном непараметрические статистические критерии. В сумме они охватывают большую часть возможных задач сопоставления данных.

Единственный параметрический метод, включенный в руково­дство - метод дисперсионного анализа, двухфакторный вариант которого ничем невозможно заменить.

Наши рекомендации