Критерий Колмогорова-Смирнова
Назначение критерия
Критерий X предназначен для сопоставления двух распределений:
а) эмпирического с теоретическим, например, равномерным или
нормальным;
б) одного эмпирического распределения с другими эмпирическим
распределением.
Критерий позволяет найти точку, в которой сумма накопленных расхождений между двумя распределениями является наибольшей, и оценить достоверность этого расхождения.
Описание критерия
Если в методе χ2 мы сопоставляли частоты двух распределений отдельно по каждому разряду, то здесь мы сопоставляем сначала частоты по первому разряду, потом по сумме первого и второго разрядов, потом по сумме первого, второго и третьего разрядов и т. д. Таким образом, мы сопоставляем всякий раз накопленные к данному разряду частоты.
Если различия между двумя распределениями существенны, то в какой-то момент разность накопленных частот достигнет критического значения, и мы сможем признать различия статистически достоверными. В формулу критерия λвключается эта разность. Чем больше эмпирическое значение λ, тем более существенны различия.
Гипотезы
Н0: Различия между двумя распределениями недостоверны (судя по точке максимального накопленного расхождения между ними).
H1: Различия между двумя распределениями достоверны (судя по точке максимального накопленного расхождения между ними).
Графическое представление критерия
Рассмотрим для иллюстрации распределение желтого (№4) цвета в 8-цветном тесте М. Люшера. Если бы испытуемые случайным образом выбирали цвета, то желтый цвет, так же, как и все остальные, равновероятно мог бы занимать любую из 8-и позиций выбора. На практике, однако, большинство испытуемых помещают этот цвет, "цвет ожидания и надежды" на одну из первых позиций ряда.
На Рис. 4.9 столбиками представлены относительные частоты[19] попадания желтого цвета сначала на 1-ю позицию (первый левый столбик), затем на 1-ю и 2-ю позицию (второй столбик), затем на 1-ю, 2-ю и 3-ю позиции и т. д. Мы видим, что высота столбиков постоянно возрастает, так как они отражают относительные частоты, накопленные к данной позиции. Например, столбик на 3-й позиции имеет высоту 0,51.Это означает, что на первые три позиции желтый цвет помещают 51% испытуемых.
Прерывистой линией на Рис. 4.9 соединены точки, отражающие накопленные частоты, которые наблюдались бы, если бы желтый цвет с равной вероятностью попадал на каждую из 8-и позиций. Сплошными линиями обозначены расхождения между эмпирическими и теоретическими относительными частотами. Эти расхождения обозначаются как d.
Рис. 4.9. Сопоставления в критерии λ: стрелками отмечены расхождения между эмпирическими и теоретическими накопленными относительными частотами по каждому разряду
Максимальное расхождение на Рис. 4.9 обозначено как dmax. Именно эта, третья позиция цвета, и является переломной точкой, определяющей, достоверно ли отличается данное эмпирическое распределение от равномерного. Мы проверим это при рассмотрении Примера 1.
Ограничения критерия λ
1. Критерий требует, чтобы выборка была достаточно большой. При сопоставлении двух эмпирических распределений необходимо, чтобы п1,2 >50. Сопоставление эмпирического распределения с теоретическим иногда допускается при п>5 (Ван дер Варден Б.Л., 1960; Гублер Е.В., 1978).
2. Разряды должны быть упорядочены по нарастанию или убыванию какого-либо признака. Они обязательно должны отражать какое-то однонаправленное его изменение. Например, мы можем за разряды принять дни недели, 1-й, 2-й, 3-й месяцы после прохождения курса терапии, повышение температуры тела, усиление чувства недостаточности и т. д. В то же время, если мы возьмем разряды, которые случайно оказались выстроенными в данную последовательность, то и накопление частот будет отражать лишь этот элемент случайного соседства разрядов. Например, если шесть стимульных картин в методике Хекхаузена разным испытуемым предъявляются в разном порядке, мы не вправе говорить о накоплении реакций при переходе от картины №1 стандартного набора к картине №2 и т. д. Мы не можем говорить об однонаправленном изменении признака при сопоставлении категорий "очередность рождения", "национальность", "специфика полученного образования" и т.п. Эти данные представляют собой номинативные шкалы: в них нет никакого однозначного однонаправленного изменения признака.
Итак, мы не можем накапливать частоты по разрядам, которые отличаются лишь качественно и не представляют собой шкалы порядка. Во всех тех случаях, когда разряды представляют собой не упорядоченные по возрастанию или убыванию какого-либо признака категории, нам следует применять метод χ2.