Обоснование задачи сопоставления и сравнения
Очень часто перед исследователем в психологии стоит задача выявления различий между двумя, тремя и более выборками испытуемых. Это может быть, например, задача определения психологических особенностей хронически больных детей по сравнению со здоровыми, юных правонарушителей по сравнению с законопослушными сверстниками или различий между работниками государственных предприятий и частных фирм, между людьми разной национальности или разной культуры и, наконец, между людьми разного возраста в методе "поперечных срезов".
Иногда по выявленным в исследовании статистически достоверным различиям формируется "групповой профиль" или "усредненный портрет" человека той или иной профессии, статуса, соматического заболевания и др. (см., например, Cattell R.B., Eber H.W., Tatsuoka М.М., 1970).
В последние годы все чаще встает задача выявления психологического портрета специалиста новых профессий: "успешного менеджера", "успешного политика", "успешного торгового представителя", "успешного коммерческого директора" и др. Такого рода исследования не всегда подразумевают участие двух или более выборок. Иногда обследуется одна, но достаточно представительная выборка численностью не менее 60 человек, а затем внутри, этой выборки выделяются группы более и менее успешных специалистов, и их данные по исследованным переменным сопоставляются между собой. В самом простом случае критерием для разделения выборки на "успешных" и "неуспешных" будет средняя величина по показателю успешности. Однако такое деление является довольно грубым: лица, получившие близкие оценки по успешности, могут оказаться в противоположных группах, а лица, заметно различающиеся по оценкам успешности, - в одной и той же группе.
Это может исказить результаты сопоставления групп или по крайней мере сделать различия между группами менее заметными.
Чтобы избежать этого, можно попробовать выделить группы "успешных" и "неуспешных" специалистов более строго, включая в первую из них только тех, чьи значения превышают среднюю величину не менее чем на 1/4 стандартного отклонения, а во вторую группу - только тех, чьи значения не менее чем на 1/4 стандартного отклонения ниже средней величины. При этом все, кто оказывается в зоне средних величин, М±1/4 σ, выпадают из дальнейших сопоставлений. Если распределение близко к нормальному, то выпадет примерно 19,8% испытуемых. Если распределение отличается от нормального, то таких испытуемых может быть и больше. Чтобы избежать потерь, можно сопоставлять не две, а три группы испытуемых: с высокой, средней и низкой профессиональной успешностью.
(30,9% испытуемых) (38,2% испытуемых) (30,9% испытуемых)
Рис 2.1. Схематическое изображение процесса разделения выборки на группы с низкой, средней и высокой профессиональной успешностью
На Рис. 2.1 представлена схема разделения выборки на группы с низкой, средней и высокой профессиональной успешностью по критерию отклонения значений от средней величины на 1/2 стандартного отклонения. При таком строгом критерии в "среднюю" группу попадают (при нормальном распределении) около 38,2% всех испытуемых, а в крайних группах оказывается по 30,9% испытуемых.
Чем меньше испытуемых оказывается в группах, тем меньше у нас возможностей для выявления достоверных различий, так как критические значения большинства критериев при малых п строже, чем при больших п.
Таким образом, при нестрогом разделении испытуемых на группы мы теряем в точности, а при строгом - в количестве испытуемых.
При решении задач выявления различий в уровневых показателях следует помнить, что "усредненный профиль успешного специалиста" должен рассматриваться скорее как исследовательский результат, позволяющий сформулировать гипотезы для дальнейших исследований, а не как основание для профессионального отбора. Тому есть две причины. Во-первых, ни у одного из успешных специалистов может не наблюдаться "усредненный профиль" - он, в сущности, является отвлеченным обобщением; во-вторых, в профессиональной деятельности наличие собственного индивидуального стиля важнее соответствия "среднегрупповому" профилю. Недостаток в тех качествах, которые могут казаться важными, компенсируется другими качествами. У каждого успешного специалиста его психологические свойства создают неповторимый ансамбль, который при усреднении данных теряется.
Р.Б. Кеттелл, учитывая это, предлагал при исследовании профессиональной успешности включать в рассмотрение индивидуальные профили выдающихся представителей той или иной профессии (Cattell R.B., Eber H.W., Tatsuoka М.М., 1970).
Сопоставление уровневых показателей в разных выборках может быть необходимой частью комплексных диагностических, учебных, пси-хокоррекционных и иных программ. Оно помогает нам обратить внимание на те особенности обследованных выборок, которые должны быть учтены и использованы при адаптации программ к данной группе в процессе их конкретного воплощения.
Критерии, которые рассматриваются в данной главе, предполагают, что мы сопоставляем так называемые независимые выборки, то есть две или более выборки, состоящие из разных испытуемых. Тот испытуемый, который входит в одну выборку, уже не может входить в другую. В противоположность этому, если мы обследуем одну и ту же выборку испытуемых, несколько раз подвергая ее аналогичным измерениям ("замерам"), то перед нами - так называемые связанные, или зависимые, выборки данных. Сопоставление 2-х или более замеров, полученных на одной и той же выборке, рассматривается в Главе 3.
Решение о выборе того или иного критерия принимается на основе того, сколько выборок сопоставляется и каков их объем (см. Алгоритм 7 в конце главы).
Q - критерий Розенбаума
Назначение критерия
Критерий используется для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. В каждой из выборок должно быть не менее 11 испытуемых.
Описание критерия
Это очень простой непараметрический критерий, который позволяет быстро оценить различия между двумя выборками по какому-либо признаку. Однако если критерий Q не выявляет достоверных различий, это еще не означает, что их действительно нет.
В этом случае стоит применить критерий φ* Фишера. Если же Q-критерий выявляет достоверные различия между выборками с уровнем значимости р<0,01, можно ограничиться только им и избежать трудностей применения других критериев.
Критерий применяется в тех случаях, когда данные представлены по крайней мере в порядковой шкале. Признак должен варьировать в каком-то диапазоне значений, иначе сопоставления с помощью Q -критерия просто невозможны. Например, если у нас только 3 значения признака, 1, 2 и 3, - нам очень трудно будет установить различия. Метод Розенбаума требует, следовательно, достаточно тонко измеренных признаков.
Применение критерия начинаем с того, что упорядочиваем значения признака в обеих выборках по нарастанию (или убыванию) признака. Лучше всего, если данные каждого испытуемого представлены на отдельной карточке. Тогда ничего не стоит упорядочить два ряда значений по интересующему нас признаку, раскладывая карточки на столе. Так мы сразу увидим, совпадают ли диапазоны значений, и если нет, то насколько один ряд значений "выше" (S1), а второй - "ниже" (S2). Для того, чтобы не запутаться, в этом и во многих других критериях рекомендуется первым рядом (выборкой, группой) считать тот ряд, где значения выше, а вторым рядом - тот, где значения ниже.
Гипотезы
H0: Уровень признака в выборке 1 не превышает уровня признака в выборке 2.
H1: Уровень признака в выборке 1 превышает уровень признака в выборке 2.