Сравнение растровой и векторной моделей данных

Ввод

Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных с бумажных карт в компьютерные файлы называется оцифровкой. В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных проектов, либо, при небольшом объеме работ, данные можно вводить с помощью дигитайзера. Многие данные уже переведены в форматы, напрямую воспринимаемые ГИС-пакетами.

Манипулирование

Часто для выполнения конкретного проекта имеющиеся данные нужно дополнительно видоизменить в соответствии с требованиями вашей системы. Например, географическая информация может быть в разных масштабах (осевые линии улиц имеются в масштабе 1: 100 000, границы округов переписи населения - в масштабе 1: 50 000, а жилые объекты - в масштабе 1: 10 000). Для совместной обработки и визуализации все данные удобнее представить в едином масштабе. ГИС-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи.

Управление

В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять системы управления базами данных (СУБД), то специальными компьютерными средствами для работы с интегрированными наборами данных (базами данных). В ГИС наиболее удобно использовать реляционную структуру, при которой данные хранятся в табличной форме. При этом для связывания таблиц применяются общие поля. Этот простой подход достаточно гибок и широко используется во многих, как ГИС, так и не ГИС приложениях.

Запрос и анализ

При наличии ГИС и географической информации Вы сможете получать ответы простые вопросы (Кто владелец данного земельного участка? На каком расстоянии друг от друга расположены эти объекты? Где расположена данная промзона?) и более сложные, требующие дополнительного анализа, запросы (Где есть места для строительства нового дома? Каков основный тип почв под еловыми лесами? Как повлияет на движение транспорта строительство новой дороги?). Запросы можно задавать как простым щелчком мышью на определенном объекте, так и с посредством развитых аналитических средств. С помощью ГИС можно выявлять и задавать шаблоны для поиска, проигрывать сценарии по типу “что будет, если…”. Современные ГИС имеют множество мощных инструментов для анализа, среди них наиболее значимы два: анализ близости и анализ наложения. Для проведения анализа близости объектов относительно друг друга в ГИС применяется процесс, называемый буферизацией. Он помогает ответить на вопросы типа: Сколько домов находится в пределах 100 м от этого водоема? Сколько покупателей живет не далее 1 км от данного магазина? Какова доля добытой нефти из скважин, находящихся в пределах 10 км от здания руководства данного НГДУ? Процесс наложения включает интеграцию данных, расположенных в разных тематических слоях. В простейшем случае это операция отображения, но при ряде аналитических операций данные из разных слоев объединяются физически. Наложение, или пространственное объединение, позволяет, например, интегрировать данные о почвах, уклоне, растительности и землевладении со ставками земельного налога.

Визуализация

Для многих типов пространственных операций конечным результатом является представление данных в виде карты или графика. Карта - это очень эффективный и информативный способ хранения, представления и передачи географической (имеющей пространственную привязку) информации. Раньше карты создавались на столетия. ГИС предоставляет новые удивительные инструменты, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками и таблицами, фотографиями и другими средствами, например, мультимедийными.

4.

В ArcGIS представлен новый подход к хранению и представлению географических данных - объектно-ориентированная модель данных, названная базой геоданных.

С помощью этой модели пользователь может создавать объекты с новыми качествами и, тем самым, как бы моделировать объекты реального мира. Напомним, что в модели данных покрытия пользователь может описывать только геометрию объекта и его характеристику, где описание его поведения возможно только с помощью дополнительных созданных пользователем программ, что ограничивало возможности анализа и обработки, например анализ разных типов объектов в реальном времени и т.д.

Объекты, хранящиеся в базе геоданных, то есть являющиеся частью физической модели, также имеют свое описание в логической модели данных. То есть, при работе с БГД пользователь одновременно работает с двумя моделями: физической и логической.

Более того, модель данных БГД позволяет реализовать те типы поведения географических объектов, для которых ранее требовалось писать отдельный код (приложение). Реализация этих типов поведения основывается на доменах и правилах проверки корректности объектов, а также на базе многих других функций, которые обеспечивает ArcGIS. А написание кода необходимо только на этапе описания специализированного поведения.

Векторные модели данных строятся на векто­рах, занимающих часть пространства в отличие от занимающих все про­странство растровых моделей. Это определяет их основное преимуще­ство - требование на порядки меньшей памяти для хранения и меньших затрат времени на обработку и представление.

При построении векторных моделей объекты создаются путем со­единения точек прямыми линиями, дугами окружностей, полилиниями. Площадные объекты - ареалы задаются наборами линий. В векторных моделях термин полигон (многоугольник) является синонимом словаареал.

Векторные модели используются преимущественно в транспортных, коммунальных, маркетинговых приложениях ГИС. Системы ГИС, рабо­тающие в основном с векторными моделями, получили названиевек­торных ГИС.

В реальных ГИС имеют дело не с абстрактными линиями и точка­ми, а с объектами, содержащими линии и ареалы, занимающими про­странственное положение, а также со сложными взаимосвязями между ними. Поэтому полная векторная модель данных ГИС отображает про­странственные данные как совокупность следующих основных частей:

• геометрические (метрические) объекты (точки, линии и полигоны);

• атрибуты - признаки, связанные с объектами;

• связи между объектами.

Векторные модели (объектов) используют в качестве атомарной модели последовательность координат, образующих линию.

^ Линией называют границу, сегмент, цепь или дугу. Основные типы координатных данных в классе векторных моделей определяются через базовый элемент пиния следующим образом. Точка определяется как выродившаяся линия нулевой длины, линия - как линия конечной дли­ны, а площадь представляется последовательностью связанных между собой сегментов.

Каждый участок линии может являться границей для двух ареалов либо двух пересечений (узлов). Отрезок общей границы между двумя пересечениями (узлами) имеет разные названия, которые являются си­нонимами в предметной области ГИС. Специалисты по теории графов предпочитают слову линия термин ребро, а для пересечения употребля­ют термин вершина. Национальным стандартом США официально сан­кционирован термин цепь (chain). В некоторых системах (Arcinfo, GeoDraw) используется термин дуга.

В отличие от обычных векторов в геометрии дуги имеют свои атри­буты. Атрибуты дуг обозначают полигоны по обе стороны от них. По отношению к последовательному кодированию дуги эти полигоны име-нуютсялевым и правый. Понятие дуги (цепи, ребра) является фундамен­тальным для векторных ГИС.

Векторные модели получают разными способами. Один из наибо­лее распространенных - векторизация сканированных (растровых) изоб­ражений. Она заключается в выделении векторных объектов со скани­рованного изображения и получении их в векторном формате.

Для векторизации необходимо высокое качество ( отчетливые линии и контуры) растровых образов. Чтобы обеспечить требуемую четкость ли­ний, иногда приходится заниматься улучшением качества изображения.

Процесс сканирования требует незначительных затрат труда, но не­обходимость последующей векторизации увеличивает расходы практи­чески до уровня ручного цифрования. При векторизации возможны ошибки, исправление которых осуществляется в два этапа:

1) корректировка растрового изображения до его векторизации;

2) корректировка векторных объектов. Векторные модели с помощью дискретных наборов данных отобра­жают непрерывные объекты или явления. Следовательно, можно гово­рить о векторной дискретизации. При этом векторное представление позволяет отразить большую пространственную изменчивость для од­них районов, чем для других, по сравнению с растровым представлени­ем, что обусловлено более четким показом границ и их меньшей зависи­мостью от исходного образа (изображения), чем при растровом отобра­жении. Это типично для социальных, экономических, демографических явлений, изменчивость которых в ряде районов более интенсивна.

Некоторые объекты являются векторными по определению, напри­мер границы соответствующего земельного участка, границы районов и т.д. Поэтому векторные модели обычно используют для сбора данных координатной геометрии (топографические записи), данных об админи­стративно-правовых границах и т.п.

6.

Растровая модель данных.Модель данных, именуемая растровой взамен устаревшего наименования матричной модели данных, имеет аналогии в компьютерной графике, где растр— прямоугольная решетка — разбивает изображение на составные однородные (гомогенные) далее неделимые части, называемые пикселами (от английского pixel, сокращение от «picture element» — элемент изображения), каждому из которых поставлен в соответствие некоторый код, обычно идентифицирующий цвет в той или иной системе цветов (цветовой модели). Из множества значений логических пикселов складывается цифровое изображение. Растровая модель данных в ГИС предполагает разбиение пространства (координатной плоскости) с вмещающими ее пространственными объектами на аналогичные пикселам дискретные элементы, упорядоченные в виде прямоугольной матрицы. Для цифрового описания (позиционирования) точечного объекта при этом будет достаточно указать его принадлежность к тому или иному элементу дискретизации, учитывая, что его положение однозначно определено номерами столбца и строки матрицы (при необходимости координаты пиксела, либо его центроида или любого угла могут быть вычислены). Пикселу присваивается цифровое значение, определяющее имя или семантику (атрибут) объекта. Аналогичным образом описываются линейные и полигональные объекты: каждый элемент матрицы получает значение, соответствующее принадлежности или непринадлежности к нему того или иного объекта

7.

Преимущества

Растровая модель Векторная модель
1. Простая структура данных 2. Эффективные оверлейные операции 3. Работа со сложными структурами 4. Работа со снимками   1. Компактная структура 2. Топология 3. Качественная графика  

Сравнение растровой и векторной моделей данных

Приведем сравнение растровой и векторной моделей данных. Цель состоит в обзоре их характеристик и сравнении их преимуществ и недостатков. Хотя трудно указать точные правила, которых придерживаются растровая и векторная структуры данных, дадим несколько полезных обобщений, которые используются.

Основной фокус векторной модели данных – географический объект; растровой – местоположение.

Векторная модель данных больше соответствует вопросу «Что я знаю об этом географическом объекте?» Растровая модель отвечает на вопрос «Какое географическое явление имеется в этом месте?»

Векторная модель использует х,у координаты для представления географических объектов, растровая хранит строки и столбцы значений ячеек.

Векторная модель данных определяет границы. В растровой модели границы не определены.

Векторная модель представляет местоположение как х,у координаты в декартовой системе координат. Растровая модель представляет местоположение в виде ячеек, также в декартовой системе координат.

Векторная модель представляет форму объекта точно; растровая модель представляет прямоугольные области и поэтому является более обобщенной и менее точной.

Векторная модель представляет объекты с хорошо определенными границами; растровая модель представляет более общую точку зрения. Растровая модель может также представлять постепенный переход между объектами и поверхностями, такой как классификация загрязнений и высота над уровнем моря.

Векторная модель используется для высококачественной картографии и там, где важны четкость и точность, например, для кадастровых применений. Растровая модель данных полезна для хранения изображений и хорошо подходит для многих операций пространственного моделирования, таких как выбор оптимального маршрута, моделирование ливневого стока поверхности распространения лесного пожара.

Операция перекрывания проверяет два набора данных для определения, какие географические объекты находятся в одном и том же месте. Перекрывание векторов является сложной операцией, в то время как природа векторной модели данных позволяет простое и быстрое перекрывание.

Когда необходимо конвертировать данные из одной модели данных в другую, используют растеризацию и векторизацию. Создание полигонов из сетки относительно просто: нужно только следовать по границам между ячейками с разными значениями. Однако векторизация линейных объектов из сетки – более сложная и требует более тонких операций.

Практические задания

1.ебаааааааааааааааать, пиздец же………

2 то е самое,

3. ничего не изменилось.

4 просто пиздец…..

5.я оказывается вообще долбаеб.

Наши рекомендации