Портландцементы с минеральными добавками
Цементный клинкер — энергоемкий в производстве и дорогостоящий продукт. Поэтому во всех случаях, когда это допустимо, его заменяют более дешевыми природными продуктами или промышленными отходами. К таким смешанным цементам относятся шлакопортландцемент, пуццолоновый цемент и кладочные цементы.
Шлакопортландцемент получают путем совместного помола доменного гранулированного шлака (21...80 %), портландцементного клинкера (79...20 %) и гипса (не более 5 %).
Доменный шлак — отход производства чугуна (на 1 т чугуна приходится около 0,6 т шлака), поэтому шлакопортландцемент экономически выгоднее, чем портландцемент. Выпуск шлакопортландцемента в России составляет около 1/3 от общего выпуска цемента. Химический состав доменного гранулированного шлака близок к составу клинкера. К самостоятельному твердению шлак не способен, но в присутствии портландцемента и гипса он проявляет вяжущие свойства.
Шлакопортландцемент выпускают трех марок: 300, 400 и 500. По коррозионной стойкости и водостойкости он превосходит обычный портландцемент, но твердеет несколько медленнее и при этом выделяет меньше теплоты. Недостаток шлакопортландцемента — пониженная по сравнению с обычным портландцементом морозостойкость.
Пуццолановый портландцемент получают либо путем совместного помола портландцементного клинкера (79...60 %), активной минеральной добавки (21...40 %) и небольшого количества гипса, либо тщательным смешиванием этих же компонентов, но предварительно каждый из них измельчают. К активным минеральным добавкам относятся: вулканические туфы, пеплы и пемзы, диатомит, трепел, опока, золы ТЭС и другие вещества. Активные добавки связывают выделяющийся при твердении цемента Са(ОН)2 в нерастворимые гидросиликаты, благодаря чему повышаются водостойкость и коррозионная стойкость цементного камня. Пуццолановые цементы отличаются низким тепловыделением при твердении и пониженной скоростью твердения. Морозо- и воздухостойкость пуццолановых цементов ниже, чем портландцемента. Пуццолановый портландцемент выпускают марок: 300 и 400. Пуццолановый портландцемент применяют для гидротехнического строительства, а также для подземных и подводных сооружений.
Пуццолановый портландцемент и шлакопортландцемент, требуют увлажнения во время твердения.
Цементы для строительных, растворов (кладочные цементы) – это как бы разбавленный портландцемент. Содержание клинкера в таких цементах 20...30 %, а остальная часть цемента состоит из молотых активных и инертных (известняк, песок) добавок. Марка кладочных цементов 200. Такие цементы применяют для кладочных и штукатурных растворов и неармированных бетонов классов В12,5 и ниже. Использование кладочных цементов дает экономию цементного клинкера — наиболее дорогой части цементов.
Глиноземистый цемент
Глиноземистый цемент — быстротвердеющее гидравлическое вяжущее, состоящее преимущественно из моноалюмината кальция (СаО•А12О3). Свое название этот цемент получил от технического названия оксида алюминия А12О3 — «глинозем».
Промышленное производство глиноземистого цемента началось во Франции в 1912 г. под названием «цемент Фондю» (в Европе этот цемент до сих пор носит это название).
Сырьем для глиноземистого цемента служат бокситы и чистые известняки. Бокситы — горная порода, состоящая из гидратов глинозема (А12О3 • nН2О) и примесей (в основном Fe2O3, SiO2, СаО и др.). Бокситы широко используются в различных отраслях промышленности: для получения алюминия, абразивов, огнеупоров, адсорбентов и т.п., а месторождений с высоким содержанием А12О3 очень немного.
Производство глиноземистого цемента более энергоемко, чем производство портландцемента. Клинкер глиноземистого цемента получают либо плавлением в электрических или доменных печах (при 1500...1600° С), либо спеканием (при 1200...1300° С). Размол клинкера затруднен из-за его высокой твердости. В целом из-за того, что производство глиноземистого цемента очень энергоемко, а сырье (бокситы) — дефицитно, его стоимость в несколько раз выше, чем стоимость портландцемента.
Химический состав глиноземистого цемента, получаемого разными методами, находится в следующих пределах: СаО - 35...45 %; А12О3 - 30...50 %; Fe2O3 - 0...15 %; SiO2 - 5...15 %. В минеральном составе клинкера глиноземистых цементов преобладает однокальциевый алюминат СаО • А12О3 (СА), определяющий основные свойства этого вяжущего. Кроме того, в нем присутствуют алюминаты — СА2, С12А7; двухкальциевый силикат C2S, отличающийся, как известно, медленным твердением, и в качестве неизбежной балластной примеси — геленит - 2СаО • А12О3 • 2SiO2.
Процесс твердения глиноземистого цемента и прочность образующегося цементного камня существенно зависят от температуры твердения. При нормальной температуре (до + 25° С) основной минерал цемента — СА взаимодействует с водой с образованием кристаллического гидроалюмината кальция и гидроксида алюминия в виде гелевидной массы:
2(СаО • А12О3) + 11Н2О → 2СаО • А12О3 • 8Н2О + 2А1(ОН)3 + Q
Суммарное тепловыделение (Q) у глиноземистого цемента немного ниже, чем у портландцемента (около 300...400 кДж/кг), но протекает оно в очень короткие сроки (в первые сутки выделяется 70...80 % от общего количества теплоты). Поэтому возможен перегрев бетонов на глиноземистом цементе в случае больших объемов бетонирования.
У глиноземистого цемента удивительное сочетание свойств.
Сроки схватывания почти такие же, как у портландцемента: начало — не ранее 30 мин, конец — не позднее 12 ч (реально 4...5 ч).
После окончания схватывания прочность нарастает очень быстро (лавинообразно). Уже через сутки глиноземистый цемент набирает до 90 % от марочной прочности, которая у него определяется в 3-суточном возрасте. Марки у глиноземистого цемента такие же, как у портландцемента: 400; 500 и 600
Усадка глиноземистого цемента при твердении на воздухе ниже, чем у портландцемента, в 3...5 раз. Пористость цементного камня также ниже (приблизительно в 1,5 раза). Это связано с тем, что при одинаковой с портландцементом водопотребности глиноземистый цемент при твердении химически связывает 30...45 % воды от массы цемента (портландцемент — около 20 %).
Области применения. Глиноземистый цемент целесообразно использовать при аварийных и срочных работах, при зимних работах и в тех случаях, когда от бетона требуется высокая водостойкость и водонепроницаемость. Кроме того, глиноземистый цемент является компонентом многих расширяющихся цементов.
Специальная область использования глиноземистых цементов — жаростойкие бетоны. Объясняется это тем, что, во-первых, в продуктах твердения этого цемента нет Са(ОН)2, и, во-вторых, при температуре 700...800°С между продуктами твердения цемента и заполнителями бетона начинаются реакции в твердой фазе, по мере протекания которых прочность бетона не падает, а повышается, так как бетон превращается в керамический материал (опасность присутствия Са(ОН)2 заключается в том, что при нагреве он переходит в СаО, который при любом контакте с водой гасится, разрушая при этом бетон).
Расширяющиеся цементы
Портландцемент и материалы на его основе при твердении на воздухе обнаруживают усадку. Так, тесто на портландцементе при В/Ц = 0,45 имеет усадку на воздухе около 2,5 мм/м, а раствор на том же цементе ~1 мм/м. Из-за этого при бетонировании протяженных конструкций, например, покрытий полов, на них появляются трещины. В то же время растрескивание бетона абсолютно недопустимо, например, для конструкций, работающих под давлением воды, таких, как трубы, резервуары и т. п. Для этих целей применяют специальные расширяющиеся и безусадочные цементы.
Расширяющиеся цементы даже при твердении на воздухе имеют небольшое увеличение в объеме при твердении. Безусадочные цементы это расширяющиеся цементы, у которых расширение только компенсирует усадку. Поэтому такие цементы как бы сами уплотняют себя, делая бетон водонепроницаемым. В случае, если расширяющиеся цементы используются в железобетонных конструкциях, эффект расширения вяжущего может вызывать натяжение арматуры и сжатие самого бетона, что дополнительно защитит бетон от образования трещин. Такие цементы называют напрягающими.
Для строительных целей в основном используют цементы, в которых расширение достигается с помощью образования эттрингита — гидросульфоалюмината кальция ЗСаО • А12О3 • 3CaSO4 • (31 - 32) Н2О. Образование эттрингита возможно при взаимодействии алюминатов и сульфатов кальция в водной среде. Как видно из формулы, в состав эттрингита входит большое количество воды. Именно это обстоятельство обеспечивает эффект расширения: исходные твердые продукты, взаимодействуя друг с другом и гидратируясь (т. е. присоединяя воду), увеличиваются в объеме в 2...2,5раза.
В твердеющем материале на расширяющемся цементе протекают два процесса — расширение, обусловленное процессом кристаллизации эттрингита с увеличением объема новообразований и ростом внутренних растягивающих напряжений, и препятствующий расширению процесс — рост прочности самого цементного камня.
Если образование эттрингита будет протекать раньше, чем у цементного камня появится хотя бы небольшая прочность, то эттрингит будет сжимать податливую гелеобразную массу и заметного расширения не произойдет.
Если эттрингит будет образовываться в то время, когда цементный камень набрал достаточно высокую прочность, то напряжения, обусдовленные ростом кристаллов эттрингита в ограниченном объеме, могут вызвать падение прочности и даже разрушение цементного камня, как это имеет место при сульфатной коррозии.
Таким образом, главная задача при разработке составов расширяющихся и безусадочных вяжущих - правильный выбор не только количества образующегося эттрингита, но и момента его образования относительно процесса формирования структуры цементного камня. Для различных видов расширяющихся цементов период наиболее интенсивного и безопасного расширения цементного камня составляет от 12 ч до 3…7 суток в зависимости от свойств основного структурообразующего вяжущего.
При изготовлении железобетонной конструкции на напрягающем цементе энергия расширения вяжущего частично идет на создание растягивающих напряжений в арматуре. Реакция арматуры вызывает в бетоне сжимающие напряжения. Таким образом, получаются самонапряженные железобетонные конструкции высокой плотности и трещиностойкости. Такой метод самонапряжения используется при бетонировании емкостей для хранения газов и жидкостей, устройстве гидроизоляционных слоев. Например, при бетонировании чаши стадиона в Лужниках, которая одновременно является и крышей для помещений внизу, и полом, на котором находятся скамьи для зрителей, для обеспечения водонепроницаемости использовалась смесь на основе напрягающего цемента.
Перспективная область применения бетонов и растворов на расширяю-щихся и безусадочных вяжущих — бесшовные тонкослойные стяжки или лицевые покрытия полов большой площади. С помощью полимерных модификаторов таким смесям придают свойство самовыравнивания, а эффект безусадочности гарантирует трещиностойкость. Быстрое твердение и защитные полимерные добавки обеспечивают необходимое количество воды для протекания полной гидратации без какого-либо специального ухода.