Переработка отходов нефтепереработки и нефтехимии

Сжигание нефтеотходов

Нефтеотходы, которые нельзя ре­генерировать, подвергаются сжиганию. При горении таких отходов, содержащих значительное количество воды, происходят сложные химические процессы, связанные с испарением воды и наличием ее паров в зоне пламени. Это повышает скорость горения отходов вследствие увеличения количества активных центров, каковыми являются положительно и отрицательно заряженные ионы, образующиеся в результате диссоциации воды. Появление в зоне пламени обводненного топлива большого числа активных центров атомарного водорода Н и гидроксила ОН во много раз ускоряет реакцию окисления топлива.

Вода не только является инициатором реакции, но и участвует в протекании самих реакций. Это подтверждается из­менением интенсивности свечения, которое наблюдается с увели­чением содержания воды в смеси. При сжигании обводненных топлив уменьшается дымление, которое является следствием дефицита кислорода в зоне протекания реакции.

Переработка отходов нефтепереработки и нефтехимии - student2.ru

Рис. 13.2. Схема турбобарботажной установки для сжигания жидкихнефтеотходов

1 - турбулентно движущий­ся слой; 2 — сопла "первич­ного" воздуха; 3 — "вторич­ный" воздух; 4 — зона центро­бежной стабилизации капель 5 — зона распыла 6 —турбобарботажная ванна

Процесс сжигания нефтесодержащих отходов может реа­лизовываться в топках различной конструкции; камерных, цик­лонных, надслоевых. Особый интерес представляет турбобарботажный способ горения (рис. 13.2), который характеризуется сле­дующими основными признаками:

§ 1.Процесс сжигания осуществляется в цилиндрической или узкой кольцевой камере при большой кратности обмена в тонком слое, приводимом во вращательное турбулентное движение. Слой топлива быстро прогревается и частично распыляется на более мелкие, чем при других способах, капли.

§ 2.Процесс ведется при пониженном количестве первичного воздуха и при большой его скорости. Барботажные элементы объединены в коллекторные блоки.

§ 3.Подача вторичного воздуха в камеру сгорания осуществляет­ся над слоем отходов тангенциально с пересечением ее рабочего сечения. Недоиспарившиеся капли, вынесенные из слоя под действием центробежной силы, сепарируются на стенках камеры сгорания, что исключает механическую неполноту сгорания.

§ 4.Процесс сжигания ведется при повышенном значении коэффициента избытка воздуха, что в определенных пределах позволяет изготавливать турбобарботажные горелки без футеровки и водяного охлаждения корпуса.

Турбобарботажная установка “Вихрь-1” с печью произво­дительностью 200 кг/ч показана на рис. 13.3.

Переработка отходов нефтепереработки и нефтехимии - student2.ru

Рис. 13.3. Передвижная установка "Вихрь-1"

1 - регулятор подачи нефтеотходов; 2 — за­пальный патрубок; 3 — отверстия для подачи "вторичного" воздуха; 4 — камера сгорания; 5— тру­ба; 6 — турбобарботажная крестовина; 7 — днище горелки; 8— шибер "пер­вичного" воздуха; 9 — шибер "вторичного" воз­духа; 10 — энергоблок; 11 — вентилятор; 12 — шасси

При определенных условиях (коэффициент избытка воздуха α = 1,4—1,9; закрутка “вторичного” воздуха со скоростью свыше 50 м/с) печи диаметром до 0,6 м можно изготавливать цельнометаллическими без футеровки и водяного охлаждения из обычной нержавеющей стали 1Х18Н9Т, что значительно упрощает и удешевляет их конструкцию.

Эксперименты на установках диаметром свыше 0,6 м по­казали, что, начиная с диаметра 0,8 м, эффект вращающегося кольца холодного воздуха значительно ослабевает и более крупные установки нуждаются в футеровке огнеупорным материалом, так как их стенки нагреваются выше 700 °С.

Установки “Вихрь” выпускаются с утилизацией тепла и с мокрой (реагентной и безреагентной) очисткой дымовых газов. Локальные установки такого типа могут широко применяться для сжигания горючих отходов непосредственно на месте их образования.

Основные характеристики турбобарботажной установки “Вихрь”, разработанной для сжигания нефтеотходов, приведены в табл. 13.1.

Таблица 13.1 Характеристики работы установки “Вихрь-1”

Характеристики процесса и установки Значение
Высота слоя отходов, см 0,2-3,0
Коэффициент избытка воздуха 1,4-1,9
Количество первичного воздуха, % от общего расхода 5-10
Скорость выхода первичного воздуха, м/с >50
Характер подачи вторичного воздуха Закрутка по внутренней и наружной сторонам кольцевой камеры
Допустимое содержание в отходах, %:  
влаги
твердых минеральных примесей
Размер частиц твердых примесей, мкм 0-2000
Суммарная площадь сечения барботажных отверстий, % от общей площади ванны <0,1
Конструкционный материал камеры сгорания:  
при диаметре < 0,6 м Нержавеющая сталь
при диаметре > 0,6 м Сталь с футеровкой огнеупорным кирпичом
Рекомендуемые к сжиганию углеводороды От ЛВЖ до тяжелых мазутов (tкип = 30-360 °С)
   

Для обезвреживания таких нефтесодержащих отходов (шламов нефтеперерабатывающих заводов, осадков сточных сооруже­ний), в составе которых присутствует значительное коли­чество минеральных примесей, также используется сжигание. Процесс сжигания нефтесодержащих отходов проводится в печах с “кипящим” слоем, в многоподовых и барабанных печах. Температура отходящих газов достигает 800 °С, что позволяет устанав­ливать котел-утилизатор с получением перегретого пара и горячей воды. Для сжигания 1 кг отходов автопредприятия, содержащих 60 % минеральных примесей, 10 % нефтепродуктов и 30 % воды, требуется до 0,3 кг жидких нефтеотходов с теплотой сгорания 21 МДж/кг.

Биохимическая обработка

Биохимическая обработка неф­тесодержащих отходов основана на способности некоторых микроорганизмов превращать ароматические и алифатические углеводороды в безвредные диоксид углерода и воду. Преоб­разование углеводородов происходит в аэробных условиях.

Одна из технологий биохимической обработки нефтеотходов разработана отечественными специалистами из Тюмени.

Специально разработанный бактериальный препарат “Путидойл” на основе природного штамма обладает окисляющей активностью в отношении углеводородов нефти, разрушая их до продуктов, относящихся к экологически нейтральным соеди­нениям.

Препарат представляет собой мелкодисперсный порошок с концентрацией бактерий не ниже 100 миллиардов в одном грамме сухого вещества. Влажность препарата — не более 10 %. Порошок может применяться для очистки сточных вод, водоемов, акваторий морей, технологических резервуаров, танков, судов, территорий нефтебаз и т. д. Препарат сохраняет работоспособность при температуре от —50 до 70 °С. Он активен только в кислородной среде и погибает в анаэробных условиях, т. е. при попадании в земные недра. Весьма важно, что после применения препарата на загрязненной нефтепродуктами почве выход биомассы воз­растает в 4 раза по сравнению с урожаем почвы до загрязнения.

Это объясняется тем, что продукты обезвреживания являются отличным удобрением.

Рис. 13.5. Функциональная схема установки УПТМ-8К

1 — фильтр грубой очистки; 2, 8, 13, 24, 26 — насос-дозатор НД; 3 — агрегат электронасосный; 4 — узел выдачи готовой продукции; 5 — емкость двухсекционная; б—мешалка контактная; 7— насос плунжерный; 9 — фильтр-пресс; 10— емкость приготовления коагулянта; 11 — насос ХМ 12 — фильтр грубой очистки; 14 — смеситель; 15 — автоклав-отстойник 16 — электропечь; 17— испаритель; 18— насос вакуумный ВВН1-1,5 19 — сборник отгона; 20, 21 — холодильник-конденсатор; 22 — адсорбер 23 — испаритель; 25 — холодильник; 27 — теплообменник; 28 — холодильник; 29— фильтр тонкой очистки

Регенерация отработанных индустриальных и трансфор­маторных масел производится в основном на местах их пот­ребления. Для этого разработаны различные варианты маслорегенерационных установок: УРИМ-0,8; УРИМ-10; УРТМ-200М; УФСН-1 и др. Для регенерации масел холодильных машин используется установка УРМХМ-1,6.

Переработка отходов нефтепереработки и нефтехимии

К числу твёрдых отходов на предприятиях нефтеперерабатывающей промышленности относятся различные химические продукты, адсорбенты, не подлежащие регенерации, зола и твёрдые продукты, получающиеся при термической обработке сточных вод, различные осадки, смолы и уловленные пыли при очистке выбросов и др. Самая простая утилизация этих отходов, если это допустимо, - уничтожение сжиганием в печах различных типов. Образовавшуюся золу и шлак иногда можно использовать в качестве наполнителя в производстве стройматериалов, реже в качестве удобрения, ещё реже как сырьё для выделения определённых компонентов. При невозможности использования золу и шлак направляют на хранение в отвалы, туда же попадают негорючие неиспользуемые твёрдые отходы производства.

В нефтеперерабатывающей и нефтехимической промышленности одним из основных твердофазных отходов являются кислые гудроны, образующиеся в процессах сернокислотной очистки ряда нефтепродуктов (масел, парафинов, керосино-газойлевых фракций и др.) и при производстве с присадок, синтетических моющих средств, флотореагентов. Кислые гудроны представляют собой смолообразные высоковязкие массы различной степени подвижности, содержащие в основном серную кислоту, воду и разнообразные органические вещества. Содержание органических веществ находится в пределах от 10 до 93%.

Объемы кислых гудронов весьма значительны. Их выход в масштабах СССР оценивался примерно в 300 тыс. т/год. Степень использования этих отходов не превышает 25%, что приводит к сосредоточению весьма значительных их масс в заводских прудах-накопителях (амбарах).

По содержанию основных веществ кислые гудроны обычно разделяют на два вида: с большим содержанием кислоты (≥ 50 % моногидрата) и с высоким содержанием органической массы (≥ 50 %). Состав кислых гудронов определяет возможные направления их использования. Они могут быть переработаны в сульфат аммония, использованы в виде топлива (непосредственно или после отмывки содержащейся в них кислоты) или в качестве реагента для очистки нефтепродуктов. Однако сложность технологии сульфата аммония на базе кислых гудронов и ограниченность его сбыта, а также необходимость больших затрат на очистку отходящих газов и жидких отходов при использовании кислых гудронов соответственно в качестве топлива и агента очистки нефтепродуктов являются существенными препятствиями для широкой промышленной реализации этих процессов.

Более перспективной является переработка кислых гудронов с целью получения диоксида серы, высокосернистых коксов, битумов и некоторых других продуктов. Так, при переработке кислых гудронов в диоксид серы с целью получения серной кислоты к ним обычно добавляют жидкие производственные отходы - растворы отработанной серной кислоты, выход которых в СССР составлял более 350 тыс. т/год. Получаемую смесь легче транспортировать и распылять форсунками. Термическое расщепление смеси кислых гудронов и отработанной серной кислоты проводят в печах сжигания при 800 1200 0С. В этих условиях происходит образование диоксида серы и полное сжигание органических веществ. За рубежом по этому принципу функционирует ряд установок производительностью 700 - 850 т/сут 98-99 %-ной серной кислоты или олеума. Работают такие установки и в нашей стране.

Органическая часть кислых гудронов включает различные сернистые соединения, смолы, твердые асфальтообразные вещества - асфальтены, карбены, карбоиды и другие компоненты, что позволяет перерабатывать их в битумы, широко используемые в качестве дорожно-строительных материалов. При нагревании кислых гудронов присутствующие в их составе сульфосоединения и свободная серная кислота расщепляются и, окисляя органическую часть, вызывают уплотнение массы с образованием гетерогенной смеси с высоким содержанием карбоидов. С целью получения гомогенной битумной массы переработку кислых гудронов ведут в смеси с прямогонными гудронами (смолистые массы, получающиеся после отгона из нефтей топливных и масляных фракций); при этом реакции уплотнения (за счет уменьшения концентрации окислителя и свободных радикалов от разложения сернистых соединений) идут менее глубоко с образованием смол и асфальтенов.

Способность кислых гудронов легко разлагаться при температуре 160 - 350 0С c образованием диоксида серы и высокосернистого кокса широко используют в промышленности для получения этих продуктов. Принципиально переработка кислых гудронов по этому направлению может осуществляться как с получением высокосернистого кокса и богатого по SО2 газа (для предприятий, имеющих необходимые мощности по переработке последнего), так и с получением преимущественно высокосернистого кокса.

Наибольшее распространение в промышленности нашли установки низкотемпературного разложения кислых гудронов на коксовом теплоносителе. Наряду с кислыми гудронами на таких установках можно разлагать и растворы отработанной серной кислоты при условии их предварительного смешивания с богатыми по содержанию органических веществ кислыми гудронами или нефтяными остатками.

Высокосернистый нефтяной кокс может быть использован в ряде пирометаллургических процессов цветной металлургии в качестве сульфидирующего (вместо специально добываемых серосодержащих веществ - пирита, гипса и т. п.) и восстановительного агента, в некоторых производствах химической промышленности (для получения Na2S, СS2) и в других целях. Промышленная реализация процессов получения высокосернистых нефтяных коксов на базе кислых гудронов начинается и в нашей стране. Проводятся исследования по сепарации кислых гудронов (экстракцией, адсорбцией) с целью раздельного использования кислотной и органической частей этих многотоннажных отходов.

Трудности, связанные с утилизацией кислых гудронов, привели к реализации в нефтеперерабатывающей промышленности отдельных элементов и принципов безотходной технологии. Широко внедряются, в частности, более прогрессивные способы очистки нефтепродуктов - экстракция (очистка селективными растворителями), гидрообессеривание, адсорбция.

Твердые примеси, присутствующие в перерабатываемых и вспомогательных материалах на заводах нефтеперерабатывающей и нефтехимической промышленности, и ряд других веществ приводят к образованию такого распространенного вида отходов, как нефтяные шламы. Выход их составляет около 7 кг на 1 т перерабатываемой нефти, что приводит к скоплению огромных масс этих отходов в земляных амбарах нефтеперерабатывающих заводов. Такие шламы представляют собой тяжелые нефтяные остатки, содержащие всред нем 10-56 % нефтепродуктов, 30-85 % воды и 1,3-46 % твердых примесей. При хранении в шламонакопителях (амбарах) такие отходы расслаиваются с образованием верхнего слоя, в основном состоящего из водной эмульсии нефтепродуктов, среднего слоя, включающего загрязнённую нефтепродуктами и взвешенными частицами воду, и нижнего слоя, около 3/4 которого приходится на влажную твердую фазу, пропитанную нефтепродуктами.

Использование нефтяных шламов возможно по нескольким направлениям. В частности, при обезвоживании и сушке этих отходов возможен их возврат в производство с целью последующей переработки по существующим схемам в целевые продукты. Возможно также использование их как топлива, однако это связано с большими материальными затратами.

В случае использования нефтяных шламов для получения горючего газа вода, равномерно распределенная в нефтепродуктах и тесно с ними связанная, служит активной химической средой: при термической переработке шламов она взаимодействует с топливом более эффективно, чем пар, используемый в подобных процессах. Кроме того, в присутствии воды значительно снижается сажеобразование. Промышленная реализация процесса газификации также требует больших капитальных затрат, что сдерживает его широкое применение.

К нефтяным шламам можно добавлять негашеную известь (5-50 %) и после высушивания получаемой массы в течение 2-20 сут. в естественных условиях использовать ее как наполнитель и для подсыпки при нивелировке поверхности в строительстве, поскольку выщелачиваемость такого материала незначительна.

Самым распространенным способом утилизации и обезвреживания нефтяных шламов является их сжигание в печах различной конструкции (камерных, кипящего слоя, барабанных и др.). Для сжигания таких отходов, содержащих не более 20% твердых примесей, широко используются печи кипящего слоя. При сжигании нефтяных шламов, содержащих до 70% твердых примесей, большое распространение получили вращающиеся печи барабанного типа, позволяющие сжигать отходы различного гранулометрического состава.

Необходимость постоянного расширения ассортимента, качества и выхода нефтепродуктов привела к тому, что уже сегодня 70-75 % всех химических продуктов получают с применением катализаторов. Всё это неизбежно вызывает увеличение объёма отработанных катализаторов, содержащих, как правило, цветные и редкие металлы.

Широкое внедрение различных способов извлечения платиновых металлов сдерживается, в основном, низким выходом металлов и сложностью аппаратурного оформления процесса. Существуют три основные группы таких способов: растворение только носителя, перевод в раствор и металла и носителя и галогенирование с получением летучих соединений металла. Вместе с тем, в последние годы разрабатываются и электролитические способы выделения благородных металлов из отработанных катализаторов.

Способ переработки отходов переработки нефти

Переработка отходов нефтепереработки и нефтехимии - student2.ru

Изобретение относится к способу переработки отходов. Способ переработки отходов переработки нефти включает подачу отходов переработки нефти и пластмасс в котел и нагрев объединенных отходов переработки нефти и пластмасс, используя дальнее инфракрасное излучение, таким образом, чтобы выделить летучие углеводороды, где выделенные летучие углеводороды собирают для последующего использования. Технический результат - рациональная переработка отходов. Это включает равномерное нагревание, минимизацию образования горячих пятен, минимизацию потерь тепла, снижение количеств отложений кокса в способе. 7 з.п. ф-лы, 1 табл., 1 ил., 3 пр.

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу переработки отходов переработки нефти и, в частности, к способу переработки таких отходов таким образом, чтобы извлечь из них полезные углеводородные продукты. Изобретение относится также к углеводородным продуктам, полученным в соответствии со способом.

Уровень техники

Переработка сырой нефти и нефтепродуктов по своей природе порождает значительное количество отходов переработки нефти. Выражение "отходы переработки нефти", как оно использовано здесь, предназначено для того, чтобы обозначить собирательно остатки любой операции добычи, транспортировки, складирования и переработки сырой нефти и нефтепродуктов, и включает, но не ограничивается этим, шламы, донные осадки, воски, масла, смазки, материалы, загрязненные такими отходами, такие как загрязненные фильтровальные материалы и почвы, и любые их комбинации.

В зависимости от источника сырой нефти сырье, поставляемое на данный перерабатывающий завод, может содержать различные непригодные для переработки компоненты, такие как органические соединения с высоким молекулярным весом, ил/песок/грунт, соль, сера, металлы и их соли, вода и зола. Такие компоненты могут оседать на дно складских резервуаров и становиться настолько крепко связанными и/или эмульгированными с пригодными для переработки углеводородами, что сопротивляются традиционному разделению такими способами, как фильтрация и центрифугирование. Типичный донный резервуарный шлам может содержать до 30-45% мас. воды и 5-20% мас. неочищаемых твердых веществ и не считается пригодным для переработки. Неизбежно шлам должен быть удален из резервуаров и ликвидирован соответствующим образом.

Подобным образом, когда нефтяное сырье перерабатывают, используя обычное оборудования крекинга и фракционирования, органические соединения с высоким молекулярным весом и различные нелетучие/некрекируемые компоненты конденсируются или захватываются в реакторе крекинга или в кубах колонн. Как и в случае шламов, кубовые не считаются пригодными для дальнейшей переработки и должны быть ликвидированы соответствующим образом.

До совсем недавнего времени отходы переработки нефти хоронили на свалках мусора. Однако законодательство о захоронении отходов стало более строгим, и резко возросла стоимость переработки отходов нефтепереработки для того, чтобы сделать их безопасными для захоронения. Можно ожидать, что обе этих тенденции продолжатся в будущем.

Известен ряд способов переработки отходов нефтепереработки для того, чтобы сделать их более подходящими для захоронения. Один такой способ включает в себя переработку отхода пиролизом. Это обычно включает ввод отхода в котел (известный также как реактор пиролиза) и нагрев котла, например, с использованием газовых горелок так, чтобы нагреть содержащийся в котле отход до температур, которые способствуют пиролизу и выделению из него летучих углеводородных продуктов. Выделенные летучие углеводородные продукты могут быть собраны и затем переработаны, если требуется, чтобы дать полезные нефтепродукты, такие как дизельное топливо.

Однако обычные технологии пиролиза для переработки отходов нефтепереработки известны как энергетически неэффективные. В частности, нагретые котлы склонны к значительным потерям тепла радиацией, и толстый изолирующий слой углеродистого полукокса или пиролитического остатка обычно нарастает на внутренних теплообменных поверхностях котла пиролиза (проблема, обычно называемая "закоксовыванием"). Закоксовывание понижает теплоперенос от котла к отходу и требует частых остановок процесса для того, чтобы была возможна очистка котла от кокса. Обычные технологии также не дают возможность точного и равномерного нагрева отхода, что может отрицательно повлиять на эффективность превращения отхода в полезные летучие углеводородные продукты. Такие технологические ограничения отрицательно влияют на промышленную жизнеспособность технологии.

Поэтому остается возможность исследовать или устранить один или несколько недостатков или ограничений, связанных с существующими способами переработки отходов нефтепереработки, или, по меньшей мере, предложить полезную альтернативу.

Сущность изобретения

Настоящее изобретение поэтому предлагает способ переработки отходов переработки нефти, включающий подачу отхода в котел и нагрев отхода таким образом, чтобы выделить летучие углеводороды, где отход нагревают, используя дальнее инфракрасное излучение, и где выделенные летучие углеводороды собирают для последующего использования.

По способу по изобретению остаток нефтепереработки нагревают, используя дальнее инфракрасное излучение (ДИКИ), так, чтобы выделить из отхода летучие углеводороды и оставить после себя нелетучие остатки. Летучие углеводороды собирают (и, если требуется, дополнительно очищают), чтобы получить полезные нефтепродукты, такие как дизельное топливо, бензин и жидкий нефтяной газ (ЖНГ). Остающиеся нелетучие остатки преимущественно являются относительно инертными и могут быть использованы как, например, битуминозная добавка при дорожном строительстве или просто ликвидированы в месте захоронения отходов.

Способ по изобретению может быть с выгодой проведен эффективным и рациональным образом. Считается, что это так благодаря, по меньшей мере частично, использованию для нагрева отхода ДИКИ. В частности, обнаружено, что при использовании ДИКИ отход может быть нагрет значительно быстрее и температура отхода может контролироваться легче по сравнению с использованием обычных способов нагрева. Отход может быть также нагрет равномерным образом, посредством этого минимизируя, если не избегая вообще, образование горячих пятен. Кроме того, было найдено, что нагрев ДИКИ не только минимизирует потери тепла излучением, но также снижает количество отложений кокса внутри котла. Эти технологические преимущества вместе повышают эффективность способности извлечь из отходов ценные дополнительные продукты.

Дополнительные аспекты изобретения обсуждаются более подробно ниже.

Краткое описание чертежей

Предпочтительные осуществления изобретения будут проиллюстрированы здесь только для примера со ссылкой на фиг.1, которая показывает принципиальную схему установки, которая может быть использована для осуществления способа согласно изобретению.

Подробное описание изобретения

Способ согласно изобретению включает в себя переработку отхода нефтепереработки. Во избежание каких-либо сомнений выражение "отход нефтепереработки", используемое в контексте изобретения, предназначено иметь такое же значение, как определенное здесь выше. Так, отходы могут быть остатками от любой операции добычи, транспортировки, складирования и переработки сырой нефти и нефтепродуктов и включать, но не ограничиваться этим, шламы, донные осадки, воски, масла, смазки, материалы, загрязненные такими отходами, такие как загрязненные фильтровальные материалы и почвы, и любые их комбинации. Специалисты должны понимать, что такие отходы обычно не считаются пригодными для переработки обычными способами.

Способ согласно изобретению является особо устойчивым в отношении к составу используемого в нем исходного отхода. Например, отход нефтепереработки может содержать неуглеводородные продукты, такие как ил/песок/грунт, соль, сера, металлы и их соли, вода, остатки катализатора и зола.

Способ включает подачу отхода нефтепереработки в котел. Отход может подаваться в котел любыми подходящими средствами, например экструзией или закачкой насосом. Устройства, которыми отход подают в котел, должны, конечно, проектироваться, имея в виду физические и химические свойства отхода. Если необходимо, отход может предварительно подогреваться, чтобы облегчить его подачу в котел.

Способ может осуществляться в непрерывном, полунепрерывном или периодическом режиме. Средства, которыми отход нефтепереработки подают в котел, должен быть, конечно, приспособлен так, чтобы соответствовать конкретному режиму работы. При условии, что объемы отхода нефтепереработки, которые должны быть переработаны, могут быть достаточно большими, может быть предпочтительно эксплуатировать способ в непрерывном режиме.

Нет особых ограничений на тип котла, который может быть использован согласно изобретению, при условии, что он легко может содержать в себе отход и выдержать применяемые температуры. Котел может быть, например, изготовлен из нержавеющей стали. Специалисты, как правило, могут называть котел "реактором пиролиза".

Котел должен также быть приспособлен к тому, чтобы дать возможность выделившимся из отхода летучим углеводородам быть собранными. Например, котел обычно должен иметь по меньшей мере один выходной патрубок, расположенный в шлемовом пространстве выше отхода нефтепереработки, предназначенный для того, чтобы иметь возможность сбора летучих углеводородов. Собранные летучие углеводороды будут обычно смесью таких соединений, как олефины, парафины и ароматические углеводороды. Летучие углеводороды могут, например, включать смесь углеводородных соединений С122. Специалисты должны понимать, что такие соединения могут быть легко использованы в многочисленных нефтепродуктах.

В дополнение к тому, что он приспособлен для сбора летучих углеводородов, котел может также быть приспособлен к тому, чтобы делать возможным удаление оставшихся нелетучих остатков. В таком случае в котле должно обычно быть по меньшей мере одно выпускное отверстие, предназначенное для удаления такого остатка.

Котел может также быть оснащен устройством для взбалтывания или перемешивания отхода нефтепереработки внутри котла так, чтобы способствовать равномерному нагреву отхода. Например, котел может включать перемешивающий элемент, который вращается внутри котла и перемешивает отход нефтепереработки.

Важным характерным признаком способа является то, что отход нефтепереработки нагревают, используя ДИКИ, так, что летучие углеводороды выделяются из отхода. Летучие углеводороды могут быть выделены из отхода просто вследствие термической десорбции углеводородов, уже присутствующих в отходе, и/или за счет того, что присутствующий в отходе органический материал пиролизуется.

Пиролиз является хорошо известным химическим процессом для превращения органических материалов в летучие углеводороды. Пиролиз может также приводить в результате к образованию неуглеводородныхлетучих, таких как водород.

В отличие от обычных методов пиролиза способ по изобретению позволяет пиролизовать отход нефтепереработки при относительно низких температурах (например, путем нагрева отхода до температур, лежащих в интервале от примерно 360°С до примерно 450°С). Такие низкие температуры пиролиза могут быть достигнуты благодаря действенному и эффективному переносу тепла от ДИКИ к отходу нефтепереработки.

Пиролиз отхода нефтепереработки должен, как правило, проводиться в отсутствие кислорода и может быть проведен в присутствии подходящего катализатора для того, чтобы ускорить термический крекинг углеводородных составляющих отхода.

Было найдено, что способность быстро нагреть отход и контролировать его температуру, используя ДИКИ, и затем провести пиролиз при относительно низких температурах отхода, повышает эффективность превращения отхода в летучие углеводороды, а также уменьшает образование кокса внутри котла. Без желания быть ограниченными теорией считается, что относительно низкие температуры и короткое время воздействия этих температур максимизирует образование летучих углеводородов, а также уменьшает образование кокса в котле.

Нагрев отхода нефтепереработки посредством ДИКИ может быть проведен любым подходящим способом. Например, один или несколько нагревателей ДИКИ могут быть расположены внутри котла. Обычно внутри котла должно быть помещено множество нагревателей ДИКИ. По меньшей мере часть, если не все, из одного или нескольких нагревателей ДИКИ должны находиться в контакте с отходом. Нагреватели ДИКИ поэтому представляют собой средство "внутреннего" или "прямого" нагрева отхода, отличаясь этим от средств "внешнего" или "непрямого" нагрева, используемых в обычных технологиях пиролиза.

Специалисты должны понимать, что ДИКИ определяет часть электромагнитного спектра, которая попадает в интервал между средним инфракрасным излучением и микроволновым излучением.

Обычные нагреватели ДИКИ могут быть с успехом использованы согласно изобретению для того, чтобы обеспечить источник ДИКИ. Нагреватели ДИКИ, конечно, должны быть сформированы так, чтобы выдержать условия, с которыми сталкиваются в способе. Например, нагреватели ДИКИ могут быть в форме керамических стержневых элементов, защищенных кожухами из нержавеющей стали, покрытыми подходящим излучающим соединением. Нагреватели ДИКИ могут быть расположены в котле так, чтобы быть частично или полностью погруженными в отход нефтепереработки и вызывать его результативный и эффективный нагрев.

Летучие углеводороды, выделенные из отхода нефтепереработки, могут быть собраны любым подходящим устройством, таким как конденсатор. Обычно котел должен быть приспособлен к тому, чтобы включать орошаемую фракционирующую колонну, так, чтобы собранные летучие углеводороды могли быть разделены соответственно их температурам кипения. Если желательно, фракции с более низкими температурами кипения (т.е. "легкие" фракции) могут быть введены в верх колонны так, чтобы удалить противоточной абсорбцией фракции с более высокими температурами кипения (т.е. "тяжелые" фракции) из паров углеводородов, поднимающихся через насадку внутри колонны. Таким образом, фракции с более высокими температурами кипения могут быть возвращены в реактор, чтобы подвергнуться дополнительному пиролизу.

Собранные углеводороды могут быть затем использованы в различных применениях/продуктах или, если желательно, одна или несколько из этих углеводородных фракций могут быть подвергнуты перегонке во второй орошаемой фракционирующей колонне, которая может быть использована для дополнительного разделения фракций на целевые нефтепродукты, такие как дизельное топливо и бензин.

Способ по изобретению будет также, как правило, давать долю неконденсируемых (под атмосферным давлением) углеводородов, таких как легкие углеводороды в интервале ЖНГ. Такой углеводородный газ может быть уничтожен сжиганием. Альтернативно он может быть использован, чтобы питать топливом энергоблок, который может генерировать электроэнергию для электропитания оборудования, связанного с осуществлением способа по изобретению. Например, генерированная электроэнергия может быть использована, чтобы питать нагреватели ДИКИ и другие нагревательные и перекачивающие агрегаты, используемые в способе.

В добавление к выделению летучих углеводородов нагрев отхода нефтепереработки будет также генерировать нелетучие остатки. Эти остатки будут обычно находиться в виде углеродистых остатков и вместе с любым другим присутствующим нелетучим материалом для удобства будут называться здесь далее "пиролитическими остатками". Котел может быть приспособлен к тому, чтобы легко удалять или выгружать пиролитические остатки, например, выпускным клапаном, расположенным в днище котла. Пиролитические остатки могут быть выгружены из котла вместе с по меньшей мере некоторым количеством непереработанного отхода нефтепереработки. В таком случае выгруженная смесь может быть подвергнута второй тепловой обработке, например, будучи пропущена через туннельную печь. Нагрев выгруженной смеси в туннельной печи может быть вызван любыми подходящими средствами. Например, нагрев может быть вызван обработкой остатков ДИКИ и/или микроволновым излучением. Пиролитические остатки, как правило, должны быть хорошим рецептором микроволн, и нагрев этим способом является особенно эффективным.

После нагрева выгруженной смеси в туннельной печи все присутствующие летучие углеводороды улетучиваются из смеси, давая свободно текучий рыхлый порошок. Улетучившиеся углеводороды могут быть вновь введены в котел, чтобы быть переработанными согласно способу, или собраны для последующего использования описанными здесь способами.

Выделенные теперь пиролитические остатки могут быть успешно использованы в качестве, например, битуминозной добавки при строительстве дорог или просто захоронены на свалке.

Было найдено, что пиролитические остатки, образовавшиеся по способу по изобретению, являются относительно инертными и нетоксичными. Без желания быть связанными теорией, считается, что любые токсичные вещества, такие как тяжелые металлы, в остатках становятся прочно удерживаемыми внутри стекловидной углеродистой матрицы. Сама стекловидная углеродистая матрица является относительно инертной и удерживаемые внутри ее токсичные вещества не являются легко отделяемыми от нее, например, кислотным выщелачиванием. Поэтому пиролитические остатки считаются более безопасными для использования в данном применении или при захоронении на свалке.

Отход нефтепереработки может также быть с выгодой переработан согласно изобретению в смеси с другими материалами на углеводородной основе. Например, способ может дополнительно

Наши рекомендации