Печи нагревательные. Назначение. Устройство. Принцип работы. Основные типы печей.
ТРУБЧАТЫЕ ПЕЧИ
Трубчатая печь является аппаратом, предназначенным для передачи нагреваемому продукту тепла, выделяющегося при сжигании топлива в топочной камере печи.
Трубчатые печи широко распространены в нефтегазоперерабатывающей, нефтехимической, коксохимической и других отраслях промышленности, являются составной частью многих установок и применяются в различных технологических процессах (перегонка нефти, мазута, пиролиз, каталитический крекинг, риформинг, гидроочистка, очистка масел и др.).
Существуют различные конструкции трубчатых печей, отличающихся способом передачи тепла, количеством и формой топочных камер, числом секций (камер) в зоне радиации, относительным расположением осей факела и труб, способом сжигания топлива, типом облучения труб, числом потоков нагреваемого продукта, расположением конвекционной камеры относительно радиантной, длиной радиантных и конвекционных труб.
Основными характеристиками трубчатых печей являются производительность печи, полезная тепловая нагрузка, теплонапряженность поверхности нагрева и коэффициент полезного действия печи.
В промышленности применяют трубчатые печи с поверхностью нагрева радиантных труб 15 - 2000 м². Теплопроизводительность трубчатых печей различных конструкций изменяется от 0,12 до 240 МВт, а производительность по нагреваемой среде достигает 8-105 кг/ч. Температура нагреваемой среды на входе и выходе из печи в зависимости от технологического процесса изменяется в диапазоне от 70 до 900°С, а давление-от 0,1 до 30 МПа. Для трубчатых печей КПД колеблется в пределах от 0,65 до 0,85.
1- беспламенные панельные горелки; 2 - змеевик радиантных труб; 3 - змеевик конвекционных труб; 4 - футеровка; 5 - каркас; 6 -выхлопное окно; 7 - смотровое окно; 8 - люк-лаз; 9 - резервные горелки
Рисунок 5.1 - Трубчатая печь беспламенного горения с излучающими стенками
Теплообмен в трубчатой печи
Трубчатая печь имеет камеры радиации и конвекции. В камере радиации (топочной камере), где сжигается топливо, размещена радиантная поверхность (экран), поглощающая лучистое тепло в основном за счет радиации.
В камере конвекции расположены конвекционные трубы, воспринимающие тепло главным образом при соприкосновении дымовых газов с поверхностью нагрева путем конвекции.
Нагреваемый продукт в печи последовательно проходит через конвекционные и радиантные трубы, поглощая тепло. Обычно радиантная поверхность воспринимает большую часть тепла, выделяемого в печи при сгорании топлива.
Основными показателями, характеризующими работу трубчатой печи, являются полезная тепловая нагрузка, теплонапряженность поверхности нагрева и топочного пространства, коэффициент полезного действия печи.
Основные типы печей
В промышленности применяется большое число различных конструкций и типоразмеров трубчатых печей. При выборе печи в основном следует учитывать вид топлива (газовое или комбинированное); требование технологического процесса к расположению труб камеры радиации (горизонтальное или вертикальное); необходимость дифференциального подвода тепла к трубам камеры радиации; количество регулируемых потоков; время пребывания продукта в печи или камере радиации. В настоящем кратком обзоре нет необходимости характеризовать печи всех известных типов. Рассмотрим только печи основных типов, имеющих широкое распространение.
Печь беспламенного горения с излучающими стенками представлена на рис. 5.1. Беспламенные панельные горелки 1 расположены пятью рядами в каждой фронтальной стене камеры радиации. Каждый горизонтальный ряд имеет индивидуальный газовый коллектор, что создает возможность независимого регулирования теплопроизводительности горелок одного ряда и теплопередачи к соответствующему участку радиантного экрана 2.
20) Колонна ректификационная. Реактор. Назначение. Устройство. Принцип работы.
В зависимости от применяемого давления колонные аппараты подразделяются на:
- атмосферные;
- вакуумные;
- колонны, работающие под давлением.
К атмосферным колоннам обычно относят колонны, в верхней части которых рабочее давление незначительно превышает атмосферное и определяется сопротивлением коммуникаций и аппаратуры, расположенных на потоке движения паров ректификата после колонны. Давление в нижней части колонны зависит в основном от сопротивления ее внутренних устройств и может значительно превышать атмосферное (например, колонна для разделения смеси этилбензола и ксилолов).
В вакуумных колоннах давление ниже атмосферного (создано разрежение), что позволяет снизить рабочую температуру процесса и избежать разложения продукта (разделение мазута, производство стирола, синтетических жирных кислот и др.). Величина остаточного давления в колонне определяется физико-химическими свойствами разделяемых продуктов и главным образом допустимой максимальной температурой их нагрева без заметного разложения. В колоннах, работающих под давлением, величина последнего может значительно превышать атмосферное (колонны ГФУ, стабилизаторы, абсорберы и др.).
а - тарельчатый; б - насадочный; в - пленочный;
1 -- корпус колонны; 2 - полотно тарелки; 3 - переточное устройство;
4 - опорная решетка; 5 - насадка; 6 - распределитель: 7 трубная решетка;
8 - трубка
Рис. 3.1. Схемы основных типов колонных аппаратов
По технологическому назначению колонные аппараты подразделяются на колонны атмосферных и атмосферно-вакуумных установок разделения нефти и мазута, колонны установок вторичной перегонки бензинов, каталитического крекинга, установок газоразделения, установок регенерации растворителей при депарафинизации масел и др.
По типу внутренних контактных устройств различают тарельчатые, насадочные и пленочные колонные аппараты (рис. 3.1). Области применения контактных устройств определяются свойствами разделяемых смесей, рабочим давлением в аппарате, нагрузками по пару (газу) и жидкости и т.п.
В тарельчатых аппаратах (рис. 3.1, а) контакт между фазами происходит при прохождении пара (газа) сквозь слой жидкости, находящейся на контактном устройстве (тарелке).
В насадочных колоннах (рис. 3.1, 6) контакт между газом (паром) и жидкостью осуществляется на поверхности специальных насадочных тел, а также в свободном пространстве между ними.
В пленочной колонне (рис. 3.1, в) фазы контактируют на поверхности тонкой пленки жидкости, стекающей по вертикальной или наклонной поверхности.
В нефтегазопереработке в основном применяются тарельчатые колонны. Однако в последние годы в связи с созданием эффективных насадок возрос интерес и к насадочным колоннам, особенно это относится к вакуумным процессам, приобретающим в этом случае ряд положительных характеристик: низкое гидравлическое сопротивление, малая задержка жидкости, высокая эффективность в широком интервале изменения нагрузок по пару (газу) и жидкости и др.