Развитие микроволновой химии как науки
Бурное развитие естественных наук, опирающееся прежде всего на существенное расширение технических возможностей проведения исследований, которое наблюдается в последние десятилетия, а также тесное переплетение достижений химии, физики, биологии и других областей естествознания привели к тому, что во второй половине XX века появились такие новые области химии, как лазерная химия, плазмохимия, фотохимия, химия высоких давлений. К числу этих новых разделов современной химии в последние 10–15 лет присоединилась и микроволновая химия. Микроволновая химия возникла на стыке физики и химии. Она включает химические превращения с участием твердых диэлектриков и жидкостей, связанные с использованием энергии микроволнового поля или, как было принято говорить ранее, сверхвысокочастотного поля, то есть СВЧ-излучения. Было обнаружено, что микроволновое (МВ) излучение способно в десятки и сотни раз ускорять многие химические реакции, вызывать быстрый объемный нагрев жидких и твердых образцов, эффективно (быстро и полностью) удалять влагу из твердых, в том числе и высокопористых, препаратов, модифицировать свойства различных сорбентов. Как на обычной, так и на химической кухне нагревание – самый распространенный способ ускорения различных химических превращений. При традиционном нагреве передача теплоты от нагревателя к нагреваемому объекту происходит постепенно, за счет конвекции, теплопроводности и радиационного переноса тепловой энергии от внешних участков к внутренним и всегда связана с возникновением температурного градиента. При воздействии на образец МВ-излучения нагревание обусловлено взаимодействием МВ-излучения, во многих случаях обладающего достаточно хорошей проникающей способностью, с молекулами (ионами) по всему объему облучаемого материала. В результате нагревание происходит сразу по всему объему облучаемого образца. Широкие возможности, которые открывает применение МВ-излучения в химии, вызвали большой интерес во всем мире к изучению и прикладному использованию эффектов МВ-воздействия.
В последние годы произошёл качественный скачок в развитии методов воздействия на физико-химические процессы как в неорганической, так и в органической химии. Использование акустических, электрических, магнитных полей широко распространено в синтезе и анализе веществ, возникают новые перспективные направления, в рамках которых исследуются воздействия того или иного вида излучения на протекание процесса, отдельных его стадий, выход целевого продукта, протекание побочных процессов.
Было обнаружено, что микроволновое излучение способно в десятки и сотни раз ускорять многие химические реакции, вызывать быстрый объёмный нагрев жидких и твёрдых образцов, эффективно (быстро и полностью) удалять влагу из твёрдых, в том числе и высокопористых препаратов, модифицировать свойства различных сорбентов [7]. Нагрев микроволновым излучением отличается высокой скоростью и большой эффективностью. Применение энергии микроволн, взамен используемых в настоящее время в большинстве промышленных установок теплоносителей, позволяет значительно упростить технологическую схему, исключив все процессы и аппараты, связанные с подготовкой теплоносителя, а также вредные выбросы в атмосферу [9]. Использование микроволнового излучения является перспективным не только для синтеза, но и в аналитической химии для интенсификации взаимодействий различных типов. Благодаря интенсификации многих процессов возможно уменьшение временных и денежных затрат на процессы пробоподготовки.
Микроволновый синтез отличается от традиционного теплового отсутствия высокого объёмного и временного градиентов, а также неодинаковым воздействием на различающиеся по составу компоненты гетерогенных систем. В электромагнитном микроволновом поле происходит ориентация заряженных частиц и диполей, присутствующих в растворе, что влияет на их взаимодействие [8]. Когда интенсивность микроволнового поля уменьшается, возникшая ориентация исчезает, и хаотичность вращательного и колебательного движения молекул восстанавливается, при этом выделяется тепловая энергия. При частоте 2,45 ГГц ориентация диполей молекул и их разупорядочивание может происходить несколько миллиардов раз в 1 с, что и приводит к быстрому разогреву образца. Кроме того, под действием микроволнового излучения происходит направленная миграция присутствующих в растворе ионов под действием внешнего поля. Такая миграция ионов - это фактически протекающий через раствор электрический ток [7]. Всё это приводит как к изменению выхода продуктов реакции, так и к возникновению специфических эффектов, наблюдаемых лишь в условиях микроволнового нагрева.