Особенности свойств полимеров
ВВЕДЕНИЕ
Неметаллические материалы – это органические, и неорганические полимерные материалы: различные виды пластических масс, композиционные материалы на неметаллической основе, каучуки и резины, клеи, герметики, лакокрасочные покрытия, а также графит, стекло, керамика. В качестве конструкционных материалов они служат важным дополнением к металлам, в некоторых случаях с успехом заменяют их, а иногда сами являются незаменимыми. Достоинством неметаллических материалов являются такие их свойства, как достаточная прочность, жесткость и эластичность при малой плотности, светопрозрачность, химическая стойкость, диэлектрические свойства, делают эти материалы часто незаменимыми. Также следует отметить их технологичность и эффективность при использовании. Трудоемкость при изготовлении изделий из неметаллических материалов в 5–6 раз ниже, они в 4–5 раз дешевле по сравнению с металлическими. В связи с этим непрерывно возрастает использование неметаллических материалов в машиностроении автомобилестроении, авиационной, пищевой, холодильной и криогенной технике и др.
Двигатели внутреннего сгорания из керамики обходятся без водяного охлаждения, что невозможно при изготовлении их из металла; обтекатели ракет делают только из неметаллических материалов (графит, керамика). Трудно представить домашнюю утварь, аудио- и видеотехнику, компьютеры, спортивное снаряжение, автомобили и другую технику без неметаллических материалов – пластмассы, ламината, керамики, резины, стекла и др.
Основой неметаллических материалов являются полимеры, главным образом синтетические. Создателем структурной теории химического строения органических соединений является А. М. Бутлеров (1826–1886 гг.). Промышленное производство первых пластмасс (фенопластов) – результат работ, проведенных Г. С. Петровым (1907–1914 гг.). С. В. Лебедевым впервые в мире осуществлен промышленный синтез каучука (1932 г.). Н. Н. Семеновым разработана теория цепных реакций и распространена на механизм цепной полимеризации. Успешное развитие химии и физики полимеров связано с именами видных ученых: П. П. Кобеко, В. А. Каргина, А. П. Александрова, С. С. Медведева, С. Н. Ушакова, В. В. Коршака и др. Развитие термостойких полимеров связано с именем К. А. Андрианова.
В области создания полимерных материалов большой вклад внесен зарубежными учеными: К. Циглером (ФРГ), Д. Наттом (Италия) и др.
Изложенные в пособии материалы описывают наиболее популярные неметаллические материалы, используемые в качестве конструкционных.
ПОЛИМЕРЫ
Полимераминазываются высокомолекулярные химические соединения, состоящие из многочисленных элементарных звеньев (мономеров), представляющих собой одинаковую группу атомов и связанных между собой химическими связями.
Макромолекулы представляют собой длинные цепи из мономеров, что определяет их большую гибкость. Отдельные атомы в мономерах соединены между собой довольно прочными ковалентными химическими связями. Между макромолекулами полимеров действуют значительно более слабые физические связи. Молекулярная масса их составляет от 5000 до 1000000. При таких больших размерах макромолекул свойства веществ определяются не только химическим составом этих молекул, но и их взаимным расположением и строением.
Классификация полимеров
Классифицируются полимеры по различным признакам: составу, форме макромолекул, фазовому состоянию, полярности, отношению к нагреву и т.д.
По природе все полимеры можно разделить на две группы – природные и синтетические. Полимеры, встречающиеся в природе – органические вещества растительного (хлопок, шелк, натуральный каучук и др.) и животного (кожа, шерсть и др.) происхождения, а также минеральными веществами (слюда, асбест, естественный графит, природный алмаз и др.). Синтетические полимеры получают из простых веществ путем химического синтеза. Основным преимуществом синтетических полимеров перед природными являются неограниченные запасы исходного сырья и широкие возможности синтеза полимеров с заранее заданными свойствами. Исходным сырьем для получения синтетических полимеров являются продукты химической переработки нефти, природного газа и каменного угля. Получаемые при этом низкомолекулярные вещества называют мономерами. Их перерабатывают в полимеры в процессе дальнейшей химической обработки.
По способу получения полимеры делят на полимеризационные и поликонденсационные.
Полимеризация – процесс химического соединения большого числа молекул мономера в одну большую молекулу полимера без изменения элементарного состава мономера. В процессе полимеризации не происходит выделения побочных продуктов реакции. По элементному составу полимер и мономер идентичны.
Поликонденсация – процесс образования полимера из молекул разных мономеров в результате химических реакций с выделением побочных продуктов реакции. Элементный состав полимера отличается от состава участвовавших в реакции поликонденсации мономеров.
Схематически формулу полимера записывают в виде [М]n где М – химическое строение мономера; n – показатель, характеризующий степень полимеризации.
По составу все полимеры подразделяют на органические, элементоорганические, неорганические.
Органические полимеры составляют наиболее обширную группу соединений. Если основная молекулярная цепь таких соединений образована только углеродными атомами, то они называются карбоцепными полимерами. В гетероцепных полимерах атомы других элементов, присутствующие в основной цепи, кроме углерода, существенно изменяют свойства полимера. Так, в макромолекулах атомы кислорода способствуют повышению гибкости цепи, атомы фосфора и хлора повышают огнестойкость, атомы серы придают газонепроницаемость, атомы фтора, сообщают полимеру высокую химическую стойкость и т. д. Органическими полимерами являются смолы и каучуки.
Элементоорганические соединения в природе не встречаются. Этот класс материалов полностью создан искусственно. Они содержат в составе основной цепи неорганические атомы (Si, Тi, А1), сочетающиеся с органическими радикалами (СН3, С6Н5, СН2). Эти радикалы придают материалу, прочность и эластичность, а неорганические атомы сообщают повышенную теплостойкость. Представителями их являются кремнийорганические соединения.
К неорганическим полимерам относятся силикатные стекла, керамика, слюда, асбест. В составе этих соединений углеродного скелета нет. Основу неорганических материалов составляют оксиды кремния, алюминия, магния, бора, фосфора, кальция и др. Органические радикалы в составе неорганических полимеров отсутствуют. К неорганическим относятся и полимеры, основное молекулярное звено которых, как и в случае органических полимеров, состоит из атомов углерода, как, например, графит и алмаз, причем графит содержит и незначительное количество атомов водорода. Однако в отличие от органических полимеров, образующих основное молекулярное звено преимущественно в виде линейных цепей, графит и алмаз образуют пространственные структуры. Это придает им свойства, резко отличающиеся от свойств органических полимеров. Графит является единственным веществом, остающимся в твердом состоянии при температуре свыше 4000 °С, а алмаз является самым твердым веществом.
По форме макромолекул полимеры делят на линейные (цеповидные), разветвленные, плоские, ленточные (лестничные), пространственные или сетчатые. Линейные макромолекулы полимера представляют собой длинные зигзагообразные или закрученные в спираль цепочки (рис. 1, а).
Гибкие макромолекулы с высокой прочностью вдоль цепи и слабыми межмолекулярными связями обеспечивают эластичность материала, способность его размягчаться при нагреве, а при охлаждении вновь затвердевать (полиэтилен, полиамиды и др.).
Разветвленные макромолекулы (рис. 1, б), являясь также линейными, отличаются наличием боковых ответвлений, что препятствует их плотной упаковке (полиизобутилен).
Макромолекула лестничного полимера (рис. 1, в)состоит из двух цепей, соединенных химическими связями. Лестничные полимеры имеют более жесткую основную цепь и обладают повышенной теплостойкостью, большей жесткостью, они нерастворимы в стандартных органических растворителях (кремнийорганические полимеры).
Пространственные полимеры образуются при соединении («сшивке») макромолекул между собой в поперечном направлении прочными химическими связями непосредственно или через химические элементы или радикалы. В результате образуется сетчатая структура с различной густотой сетки. Редкосетчатые (сетчатые) полимеры (см. рис. 1, д) теряют способность растворяться и плавиться, они обладают упругостью (мягкие резины). Густосетчатые (пространственные) полимеры (см. рис. 1, г) отличаются твердостью, повышенной теплостойкостью, нерастворимостью. Пространственные полимеры лежат в основе конструкционных неметаллических материалов. К сетчатым полимерам относятся также пластинчатые (паркетные) полимеры (рис. 1, е).
линейная | разветвленная | лестничная |
густосетчатая | редкосетчатая | паркетная |
Рис. 1. Формы макромолекул полимеров
В зависимости от взаимной ориентации макромолекул полимеры могут находиться в аморфном или кристаллическом состояниях. В аморфном состоянии полимер имеет упорядоченное строение только в пределах участков, размеры которых соизмеримы с размерами звеньев цепи макромолекул, т.е. в аморфных полимерах соблюдается ближний порядок. В кристаллических полимерах соблюдается не только ближний, но и дальний порядок на расстояниях, во много раз превышающих размеры звеньев цепи макромолекул полимера.
В структуре реальных полимеров практически всегда содержатся как аморфная, так и кристаллическая части. По преобладанию той или иной структуры полимеры делят на аморфные и кристаллические.
Характерными элементами надмолекулярной структуры полимеров являются глобула (рис. 2, а)для аморфных структур и пачка (рис. 2, б)для кристаллических. Глобула представляет собой свернутые в клубок цепи макромолекул полимера или их агрегатов. Пачка состоит из параллельно расположенных цепей, причем суммарная длина пачки, как правило, превышает длину отдельных цепей макромолекул полимера.
Аморфное состояние для большинства полимеров термодинамически более устойчиво, что определяется энергетически более выгодной формой надмолекулярного образования аморфного полимера: глобула обладает минимумом свободной энергии.
Выделяющаяся в процессе полимеризации кристаллизующегося полимера пачка макромолекул характеризуется анизометрией, поэтому энергетически выгодным является ее расположение параллельно поверхности кристаллизации. Взаимосогласованная ориентация макромолекул относительно поверхности кристаллизующихся полимеров определяет все многообразие надмолекулярных структур кристаллизующихся полимеров. Термодинамически наиболее устойчивой формой надмолекулярного образования является сферолит (рис. 2, в),сформированный тангенциально расположенными пачками макромолекул. Сферолитные структуры типичны для большинства кристаллизующихся полимеров.
глобула | пачка | сферолит |
Рис. 2. Элементы надмолекулярной структуры полимеров
На поверхностях раздела сферолитов условия контактного взаимодействия макромолекул различны. Экспериментально установлено, что прочность торцового контакта макромолекул более чем на порядок превышает прочность бокового контакта. Это открывает возможность управления прочностью кристаллизующихся полимеров.
Примером практической реализации влияния надмолекулярной структуры на прочность может служить ориентационное упрочнение полимеров. В процессе вытяжки полимеров при повышенных температурах макромолекулы ориентируются параллельно направлению приложения нагрузки. Полученная структура полимера затем фиксируется путем снижения температуры под силовой нагрузкой. Физико-механические свойства полимера в направлении ориентации увеличиваются примерно в 5 раз, а в перпендикулярном направлении уменьшаются до 2 раз по сравнению с исходным значением. Анизотропия прочности объясняется изменением соотношения торцового и бокового контактов макромолекул полимера. Ориентационное упрочнение полимеров наиболее широко применяется при получении искусственных волокон и пленок.
По отношению к электрическому полю (по полярности) полимеры подразделяются на полярные и неполярные. Полярность определяется наличием в составе полимера диполей – разобщенных центров положительных и отрицательных зарядов.
В полярных полимерах (рис. 3, а) имеются полярные связи (группировки –Сl, –F,–ОН) и несимметрия в их структуре: Центр тяжести электронов сдвинут в сторону более электроотрицательного атома. Центр тяжести разноименных зарядов не совпадают.
Полярные полимеры имеют повышенную прочность, жесткость, но низкую морозостойкость (хрупкость уже при -10…-20°С). Их можно сваривать током высокой частоты. Полярности полимера можно оценить по величине диэлектрической проницаемости Е. У полярных полимеров Е ≥ 3,5.
|
| ||||||||||||||
полярный | неполярный |
Рис. 3 Пример полярного и неполярного полимера
Неполярные (на основе углеводородов) – высококачественные диэлектрики, обладают хорошей морозостойкостью.
Дипольный момент связей атомов в неполярных полимерах взаимно компенсируется. В макромолекулах неполярных полимеров симметричное расположение групп (рис. 3, б). Центры тяжести разноименных зарядов совпадают.
Все полимеры по отношению к нагреву подразделяют на термопластичные и термореактивные.
Некоторые полимеры при нагревании плавно переходят через вязкопластическое в жидкотекучее состояние. При охлаждении отмечается также плавный переход в твердое состояние. Нагревание полимера до температур ниже температуры его термической деструкции не вызывает необратимого изменения свойств материала, что позволяет многократно повторять процесс термической обработки линейных полимеров. Такие структуры макромолекул образуют класс термопластичных полимеров.
Другие полимеры под действием теплоты, минуя жидкое состояние, необратимо переходят в твердое состояние и не могут использоваться повторно. Такое поведение полимеров при нагревании называют термореактивным, а сами полимеры относят к классу термореактивных полимеров.
ПЛАСТИЧЕСКИЕ МАССЫ
Пластические массы (далее – пластмассы) – это синтетические материалы, получаемые на основе органических и элементо-органических полимеров.
Газонаполненные пластмассы
Газонаполненные пластмассы – гетерогенные дисперсные системы, состоящие из твердой или упругоэластичной фаз.
Структура этих пластмасс: эластичный полимер как связка, который образует стенки элементарных ячеек или пор с распределенной в них фазой – наполнителем – газом.
Подобная структура определяет малую плотность и высокие теплоизоляционные и звукоизоляционные свойства.
Пенопласт изготавливают на основе полистирола, поливинилхлорида, фенола, эпоксидных смол, полиуретана, поролона и др. полимеров при их вспенивании в состоянии высокоэластичной деформации, т.е. при температурах, превышающих tс на 10–20 °С. Пенопласта имеют ячеистую структуру, газообразные наполнители отделены друг от друга и от окружающей среды тонким слоем полимера.
Пористая структура получается введением в состав смол газообразователей – (NH4)СО3, NaHC03, органических порофоров (азодинитрил, подиизоцианид и др.). Пенополистирол (ПС), пенополивинил-хлорид (ПВХ) способны работать до +60 °С. Фенолкаучуковые пенопласты способны работать до 120 °С. Добавки в их состав алюминиевой пудры (ФК-20-А-20) повышают рабочую температуру до 250 °С.
Используются пенопласты как теплоизоляционный материал, применяемый в холодильниках, рефрежираторах, для ударопоглощающей тары, звукоизоляторов и т.д.
Поропласты (губчатые материалы) – открытодыристая структура, система ячеек с частично разрушенными перегородками. Газообразная фаза в такой системе может циркулировать. Изготавливают поропласты на основе простых полимеров, вводя в состав композиций вещества, способные выкипать при нагреве или вымываться, что приводит к образованию пор. Поропласты выпускают в виде блоков с пленкой на поверхности. Эти материалы отличаются высокой звукопоглощающей способностью.
Сотопласты изготавливают из гофрированных листов полимера, склеенных в виде пчелиных сот. Применяются для обшивки панелей и как теплоизоляционный, электроизоляционный материал.
2.5. Вопросы по теме «Пластические массы»:
1. Из чего состоят пластмассы?
2.Каковы основные недостатки пластмасс?
3.Что такое термопласт?
4.Как ведут себя реактопласты при нагревании?
5.Перечислите основные виды термопластов.
6.Почему реактопласты не подвергают повторной переработке?
РЕЗИНЫ
Резиной называется продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками.
Вулканизация – превращение каучука в резину, осуществляемое с участием так называемых вулканизирующих агентов и под действием ионизирующей радиации.
Каучуки являются полимерами с линейной структурой и при вулканизации превращаются в высокоэластичные редкосетчатые материалы – резины. Вулканизирующими добавками служат сера и другие вещества. С увеличением содержания вулканизатора (серы) сетчатая структура резины становится более частой и менее эластичной. При максимальном насыщении серой (30–50%)получают твердую резину (эбонит), при насыщении серой 10–15% – полутвердую резину. Обычно в резине содержится 5–8% серы.
Для ускорения вулканизации вводят ускорители, например оксид цинка.
Резина как технический материал отличается от других материалов высокими эластическими свойствами, которые присущи каучуку – главному исходному компоненту резины. Она способна к очень большим деформациям (относительное удлинение достигает 1000%), которые почти полностью обратимы. При нормальной температуре резина находится в высокоэластическом состоянии, и ее эластические свойства сохраняются в широком диапазоне температур.
Модуль упругости лежит в пределах 1–10 МПа, т. е. он в тысячи и десятки тысяч раз меньше, чем для других материалов. Особенностью резины является ее малая сжимаемость (для инженерных расчетов резину считают несжимаемой); коэффициент Пуассона 0,4–0,5, тогда как для металла эта величина составляет 0,25–0,30. Другой особенностью резины как технического материала является релаксационный характер деформации. При нормальной температуре время релаксации может составлять 10-4 си более. При работе резины в условиях многократных механических напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение (в самом каучуке и между молекулами каучука и частицами добавок); это трение преобразуется в теплоту и является причиной гистерезисных потерь. При эксплуатации толстостенных деталей (например, шин) вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.
Кроме отмеченных особенностей для резиновых материалов характерны высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность.
Получение изделий из резины
Технология изготовления изделий из резиновых смесей состоит из ряда операций, выполняемых в определенной последовательности:
1. Нарезание каучука на куски и его пластификация путем многократного пропускания через нагретые до 40–50 °С валки с целью улучшения смешиваемости с другими ингредиентами.
2. Смешивание каучука с другими компонентами в строго определенной последовательности: сначала вводят противостарители, затем – вулканизаторы. Смешивание проводят в резиномесительных или вальцовочных машинах.
3. Каландрование резиновой смеси с целью получения сырой резины путем пропускания ее через трехбайтовую клеть листопрокатного стана-каландра. Валки стана имеют разную температуру: верхний – 90 °С, нижний – 15 °С. Резиновая масса нагревается и под действием валков превращается в лист или ленту.
4. Изготовление изделий из сырой резины методами прессования в специальных пресс-формах под давлением 5–10 МПа или литьем под давлением путем заполнения формы предварительно разогретой сырой резиной.
5. Вулканизация – формирование физико-механических свойств изделия. Горячая вулканизация на вулканизационных машинах при температуре 130–150 °С (нагретый пар, горячая вода и т.д.). При вулканизации имеет место химическое взаимодействие каучука и вулканизаторов, в результате чего линейная молекулярная структура каучука преобразуется в сетчатую.
СТЕКЛА
Неорганическое стекло – это однородное аморфное вещество, получаемое при затвердевании расплава оксидов. Оно не имеет определенной точки плавления или затвердевания и при охлаждении переходит из расплавленного, жидкого состояния в высоковязкое состояние, а затем в твердое, сохраняя при этом неупорядоченность и неоднородность внутреннего строения.
В составе стекла могут присутствовать оксиды трех типов: стеклообразующие, модифицирующие и промежуточные. Стеклообразующими являются оксиды кремния, бора, фосфора, германия, мышьяка. К модифицирующим оксидам относятся оксиды щелочных (Na, К) и щелочноземельных (Са, Мg, Ва) металлов. Модифицирующие оксиды вводят в процессе варки стекол. Глинозем А1203 повышает механическую прочность, а также термическую и химическую стойкость стекол. При добавке В203 повышается скорость стекловарения, улучшается осветление и уменьшается склонность к кристаллизации. Оксид свинца РbО, вводимый главным образом при изготовлении оптического стекла и хрусталя, повышает показатель светопреломления. Оксид цинка ZnO понижает температурный коэффициент линейного расширения стекла, благодаря чему повышается его термическая стойкость. Промежуточными являются оксиды алюминия, свинца, титана, железа, которые могут замещать часть стеклообразующих оксидов.
Технологические добавки, вводимые в состав стекол, делят по их назначению на следующие группы:
осветлители – вещества, способствующие удалению из стекломассы газовых пузырей (сульфат натрия, плавиковый шпат);
обесцвечиватели – вещества, обесцвечивающие стекольную массу;
глушители – вещества, делающие стекло непрозрачным.
Стеклообразующие оксиды (например, SiO2, А1203, В2О3, Р203) образуют пространственную сетку из однородных звеньев-полиэдров, а модифицирующие оксиды, располагаясь внутри ячеек сетки, ослабляют или разрывают связи в стеклообразующих оксидах и снижают прочисть, термо- и химическую стойкость стекла, но позволяют регулировать температуру его размягчения и другие свойства (рис. 12).
Химический состав стекла можно изменять в широких пределах, поэтому и свойства стекла могут быть различными. По химическому составу в зависимости от природы стеклообразующих оксидов различают силикатное, алюмосиликатное, боросиликатное, алюмоборосиликатное и другие виды стекла.
В зависимости от содержания модификаторов стекло может быть щелочным и бесщелочным.
По назначению различают строительное (оконное, стеклоблоки), бытовое (стеклотара, посуда) и техническое (оптическое, электротехническое, химическое и др.) стекло.
Рис. 12. Схема непрерывной структурной сетки стекла:
а – кварцевого; б – натрийсиликатного
Основные свойства стекла
Свойства неорганических стекол изотропны. К основным свойствам носятся:
• плотность – 2200 – 6500 кг/м3 (для стекол с оксидами свинца – до 8000 кг/м3);
• температуры для промышленных стекол:
- стеклования – 425–600 °С;
- размягчения – 600–800 °С;
• коэффициент теплопроводности – 0,7–15 Вт/(м·К);
• температурный коэффициент линейного расширения: для кварцевых стекол – 5,6·107°С–1; для строительных стекол – 9,0·108°С–1;
• σсж=500–2000 МПа; σраст=30–90МПа; σизг.= 50–150 МПа.
Более высокие прочностные характеристики имеют стекла бесщелочного состава и кварцевые:
• модуль сдвига (2–3)·104 МПа;
• модуль Юнга (7–7,5)·104 МПа;
• коэффициент Пуассона 0,184–0,26;
• твердость 5–7 ед. по Моосу;
• ударная вязкость – 1,5–2,5 кДж/м2;
• удельное электросопротивление – 1012–1018 Ом·см;
• диэлектрическая проницаемость – 3,5–16;
• полупроводниковые свойства;
• химическая стойкость;
• высокие оптические свойства.
По оптическим свойствам различают прозрачное, окрашенное, бесцветное и рассеивающее свет стекла.
К потребительским свойствам неорганических стекол относятся прозрачность, высокая стойкость к атмосферным воздействиям, водо- и воздухонепроницаемость, термостойкость. Термостойкость стекла характеризует его долговечность в условиях резких изменений температуры и определяется разностью температур, которую стекло может выдержать без разрушения при резком охлаждении в воде (t=0 °С). Для большинства видов стекол термостойкость колеблется от 90 до 170 °С, а для кварцевого стекла она составляет 800–1000 °С.
Стекло поддается механической обработке: его можно пилить циркулярными пилами с алмазной набивкой, обтачивать победитовыми резцами, резать алмазом, шлифовать, полировать.
Способы воздействия на неорганические стекла определяются необходимостью нейтрализовать дефектный поверхностный слой. Их можно разделить на четыре группы: механическая обработка (полирование), химическая обработка (травление), термическая обработка (закалка), химико-термическая обработка. Так, закалка, при которой можно получить анизотропию свойств, и химико-термическая обработка стекла в несколько раз повышают показатели прочности и ударную вязкость, а также увеличивают термостойкость. Травление закаленного неорганического стекла плавиковой кислотой способствует удалению поверхностных дефектов и также повышает прочность и термостойкость.
Ситаллы
Ситаллы(стеклокристаллические материалы) – искусственный материал на основе неорганического стекла, получаемый путем полной или частично управляемой кристаллизации в них.
Термин «ситаллы» образован от слов: «стекло» и «кристаллы». По структуре и технологии получения ситаллы занимают промежуточное положение между обычным стеклом и керамикой. От неорганического стекла они отличаются кристаллическим строением, а от керамических материалов – более мелкозернистой и однородной микрокристаллической структурой.
В состав ситаллов входят:
• оксиды – Li20, А12О3, SiO2, Мg0, СаО и др.;
• нуклеаторы (катализаторы кристаллизации) – соли светочувствительных металлов –Аu, Аg, Сu, являющиеся коллоидными красителями и присутствующие в стекле в виде тонкодисперсных частиц. Нуклеаторы являются дополнительными центрами кристаллизации (рис. 13). Они должны иметь кристаллическую решетку, подобную вьщеляющимся из стекла кристаллическим фазам, и способствовать равномерной кристаллизации всей массы;
• глушители (плохо растворимые частицы) – фтористые и фосфатные соединения, ТiO2 и др.
Структура ситаллов мелкокристаллическая, однородная, характеризуется отсутствием пористости. Средний размер кристаллитов в ситаллах 1–2 мкм. Содержание кристаллической фазы – не менее 40–50%. Кристаллиты срастаются между собой или связаны прослойками остаточного аморфного стекла. Количество стеклофазы не превышает нескольких процентов. Беспорядочная ориентация кристаллитов приводит к отсутствию в ситаллах анизотропии.
Регулируя режимы термообработки, можно изменять степень кристаллизации и размеры кристаллов, что отражается на свойствах изделия. Свойства ситаллов изотропны и в основном определяются фазовым составом и их структурой. Основными свойствами ситаллов являются:
• плотность 2400–2950 кг/м3;
• температура размягчения 1250–1350 °С;
• низкая теплопроводность 2–7 Вт/(м·К);
• температурный коэффициент линейного расширения (7–300)·10-7 °C-1.
• σсж=7–2000 МПа, σв=112–160 МПа, σизг=7–350 МПа;
• модуль Юнга 84–141 ГПа;
• хрупкость (при ударной вязкости 4,5–10,5 кДж/м2);
• микротвердость – 7000– 10500 МПа;
• высокая износостойкость;
• термостойкость – 200–700°С (до 1100°С);
• диэлектрические свойства;
• химическая стойкость;
• газонепроницаемость и нулевое водопоглощение.
Рис. 13. Схема кристаллизации стекла при образовании ситаллов
с помощью нуклеаторов
По внешнему виду ситаллы могут быть непрозрачными (глухими), прозрачными, а также окрашенными (темного, коричневого, серого, кремового и светлого цветов). Прочность их зависит от температуры: до 700–780 °С она снижается незначительно, а при более высоких температурах быстро падает. Жаропрочность ситаллов составляет 800–1200 °С.
Причина особо ценных свойств ситаллов заключается в их исключительной мелкозернистости и почти идеальной поликристаллической структуре. В них совершенно отсутствует всякая пористость. Усадка материала при его переработке незначительна. Большая абразивная стойкость делает их малочувствительными к поверхностным дефектам.
Детали из ситаллов соединяют друг с другом и другими материалами с помощью стеклокристаллического цемента с последующей термической обработкой при 400–600°С, клеев и замазок на основе эпоксидной смолы и жидкого стекла, металлизацией с последующей пайкой.
Ситаллы классифицируют в зависимости от способа производства, от характера исходных материалов и по назначению.
Ситалловые изделия получают, как правило, путем плавления стекольной шихты специального состава, охлаждения расплава до пластического состояния и последующего формования методами стекольной или керамической технологии (вытягивание, выдувание, прокатка, прессование), а затем ситаллизацией. Такие изделия получают также порошковым методом спекания.
По характеру исходных материалов и свойств выделяют: петроситаллы, шлакоситалаы и технические ситаллы. Разновидностью ситаллов являются ситаллопласты – композиционные материалы, получаемые на базе пластических масс (фторопластов) и ситаллов.
Петроситаллы получают на основе габбро-норитовых, диабазовых и других горных пород, шлакоситаллы – из металлургических или топливных шлаков. Технические ситаллы изготавливают на основе искусственных композиций из различных химических соединений – оксидов, солей.
По назначению ситаллы делятся на конструкционные (строительные и машиностроительные), технические, радио-, электро- и фототехнические. На основе ситаллов получают различные клеи для склеивания металла, стекла, керамики. Наиболее широкое распространение в строительстве получили шлакоситаллы и пеношлакоситаллы.
Шлакоситаллы – ситаллы из огненно-жидких металлургических шлаков. Плотность – 600–2700 кг/м3; σсж=250–550 МПа, σизг=65–130 МПа, модуль упругости Е=11·104 МПа, рабочие температуры – до 750 °С, водопоглощение практическй равно нулю; высокие кислото- и щелочестойкость.
Изделия из шлакоситалла дешевы и отличаются высокой долговечностью. Эти изделия используются для лестничных ступеней, плиток полов, внутренних перегородок, как кровельный и стеновой материал, дл облицовки ответственных частей гидросооружений, а также в дорожном строительстве в качестве плит для тротуаров, дорожных покрытий. Листовой шлакоситалл (можно получать любого цвета) используется как декоративно-отделочный материал для наружной и внутренней облицовки сооружений. Шлакоситаллы могут быть получены любы цветов, а по долговечности они конкурируют с базальтами и гранитами.
Пеношлакоситалл – вспененный шлакоситалл с ячеистой структурой. Эффективный теплоизоляционный материал с незначительным водопогло щением и малой гигроскопичностью. Рабочие температуры – до 750 °С Пеношлакоситаллы используют для утепления стен и звукоизоляции помещений, а также для изоляции трубопроводов теплотрассы и промышленны печей.
В машиностроении ситаллы применяют для изготовления подшипников, деталей двигателей, труб, жаростойких покрытий, лопастей компрессоров, точных калибров металлорежущих станков, метрологических мер длины, фильер для вытягивания синтетического волокна, абразивов для шлифования; в химическом машиностроении – пар трения плунжеров, деталей химических насосов, реакторов, мешалок, запорных клапанов. Радио- и электротехнические ситаллы используются для изготовления подложек, оболочек, плато, сетчатых экранов, антенны обтекателей и др., а также как жаростойкие покрытия для зашиты металлов от действия высоких температур. Фототехнические ситаллы применяются для изготовления сетчатых экранов телевизоров, дорожных знаков, зеркал телескопов, для замены фото эмульсий диапозитивов, на шкалах приборов и др. Разрешающая способность и качество изображения у фотоситаллов выше, чем у обычных фотоэмульсий.
4.4. Вопросы по теме «Стекла»:
1. Какое строение имеет стекло? Что входит в состав стекла?
2. Как классифицируют стекло по химическому составу и назначению?
3. Какими свойствами обладает стекло?
4. Что такое ситалл, триплекс?
КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ
Керамика – неорганические поликристаллические материалы, получаемые из сформованных минеральных масс (глины и их смеси с минеральными добавками) в процессе высокотемпературного (1200–2500 °С) спекания.
КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ
Композиционными называют однородные в макрообъеме материалы, получаемые путем искусственного объединения микроскопических объемов разнородных веществ.
Макрообъем конструкционных материалов (КМ) определяется габаритными размерами изготовленной из него детали и