Требования по ограничению облучения населения в условиях радиационной аварии

В случае возникновения аварии, при которой облучение людей может превысить основные дозовые пределы от техногенного облучения, приведенные в табл. 5.1, должны быть приняты практические меры для восстановления контроля над источником и сведения к минимуму доз облучения, количества облученных лиц из населения, радиоактивного загрязнения окружающей среды, экономических и социальных потерь, вызванных радиоактивным загрязнением.

Прогнозируемые уровни облучения, при которых безусловно необходимо срочное вмешательство

Орган или ткань Поглощенная доза в органе или ткани за 2-е суток, Гр (Грей,Дж/кг)
Все тело
Легкие
Кожа
Щитовидная железа
Хрусталик глаза
   
   

При аварии, повлекшей за собой радиоактивное загрязнение обширной территории, на основании контроля и прогноза радиационной обстановки устанавливается зона радиационной аварии (ЗРА). ЗРА определяется как территория, на которой суммарное внешнее и внутреннее облучение в единицах эффективной дозы может превышать 5 мЗв за первый после аварии год (средняя по населенному пункту). В оне радиационной аварии проводится мониторинг радиационной обстановки и осуществляются мероприятия по снижению уровней облучения населения на основе принципа оптимизации.

На поздних стадиях радиационной аварии, повлекшей за собой загрязнение обширных территорий долгоживущими радионуклидами, решения о защитных мероприятиях принимаются с учетом сложившейся радиационной обстановки и конкретных социально – экономических условий.

.

Требования к контролю за выполнением Норм

Радиационный контроль является важнейшей частью обеспечения радиационной безопасности, начиная со стадии проектирования радиационно-опасных объектов. Он имеет целью определение степени соблюдения принципов радиационной безопасности и требований нормативов, включая непревышение установленных основных дозовых пределов и допустимых уровней при нормальной работе, получение необходимой информации для оптимизации защиты и принятия решений о вмешательстве в случае радиационных аварий, загрязнения местности и зданий радионуклидами, а также на территориях и в зданиях с повышенным радиационным фоном.

Радиационному контролю подлежат:

• радиационные характеристики источников, выбросов в атмосферу, жидких и твердых отходов;

• радиационные факторы, создаваемые технологическим процессом на рабочих местах и в окружающей среде;

• радиационные факторы на загрязненных территориях и в зданиях с повышенным радиационным фоном;

• уровни облучения персонала и населения;

• источники медицинского облучения;

• природные источники.

Основными контролируемыми параметрами являются:

• годовая эффективная доза; годовая эквивалентная доза (см. табл. 5.1);

• поступление радионуклидов в организм и их содержание в организме для оценки их поступления;

• объемная или удельная активность радионуклидов в воздухе, воде, продуктах питания, строительных материалах и др.;

•радиоактивное загрязнение кожных покровов, одежды, обуви, рабочих поверхностей;

• мощность дозы внешнего излучения;

• плотность потока частиц и фотонов.

В случае любого нарушения требований Норм администрация должна:

• немедленно провести расследование причин, обстоятельств и последствий данного нарушения;

• принять меры по нормализации условий, приведших к нарушению, и по предупреждению его повторения;

• сообщить немедленно во все органы надзора и вышестоящую инстанцию о причинах нарушения и мерах по его устранению. При невыполнении этих требований орган надзора в установленном порядке прекращает деятельность учреждения, а в случаях преднамеренных действий (или бездействия), приведших к нарушению, к виновным применяются меры по привлечению к административной, дисциплинарной или уголовной ответственности.

Числовые значения допустимых уровней

Для каждой категории облучаемых лиц числовое значение допустимого уровня для данного пути облучения определено таким образом, чтобы при таком уровне воздействия только одного данного фактора облучения в течение года величина дозы, накопленной за год, равнялась величине соответствующего годового предела дозы, указанного в таблице 5.1.

Числовые значения допустимых уровней для всех путей облучения определены для стандартных условий, которые характеризуются величиной объема воздуха V, с которым радионуклид поступает в организм на протяжении календарного года; времени облучения t в течение календарного года и массы воды (рациона), с которыми радионуклид поступает в организм на протяжении календарного года.

Для лиц из персонала установлены следующие значения стандартных параметров: Vперс = 2,5×106 л в год; tперес = 1700 ч = 1×105 мин =6,1×106с;

Для лиц из населения установлены следующие значения стандартных параметров: Vнас = 7,3×106 л в год; tнас = 8800 ч = 5,3×105 мин =3,2×107с;

Заключение

В данной работе были рассмотрены особенности практического применения лазерных приборов, способы защиты, связанные с возможностью поражения глаз и кожных покровов человека, классификация ,контроль уровней опасных и вредных факторов, требования к персоналу и средства защиты от лазерного излучения на основе нормативного документа СН5804-91 под названием "Устройство и эксплуатация лазеров".

Так же работе было рассмотрено воздействие радиации на организм человека, требования к защите от облучения природными источниками в производственных условиях,требования к ограничению облучения населения, способы защиты от радиоактивного излучения для разных категорий населения.

Основополагающим нормативным документом, используемым в данной работе, является : НРБ – 96 «Норма радиационной безопасности».

Тема 12.

«Нормирование электромагнитных полей промышленной частоты»

Введение

Интенсивное использование электромагнитной и электрической энергии в современном информационном обществе привело к тому, что в последней трети XX века возник и сформировался новый значимый фактор загрязнения окружающей среды - электромагнитный. К его появлению привело развитие современных технологий передачи информации и энергии, дистанционного контроля и наблюдения, некоторых видов транспорта, а также развитие ряда технологических процессов. В настоящее время мировой общественностью признано, что электромагнитное поле (ЭМП) искусственного происхождения является важным значимым экологическим фактором с высокой биологической активностью.

Анализ планов отраслей связи, передачи и обработки информации, транспорта и ряда современных технологий показывает, что в ближайшем будущем будет нарастать использование технических средств, генерирующих электромагнитную энергию в окружающую среду.

С начала 90-х годов произошли изменения в структуре источников ЭМП, связанные с возникновением их новых видов (сотовой и других видов персональной и мобильной коммуникации), освоением новых частотных диапазонов теле- и радиовещания, развитием средств дистанционного наблюдения и контроля и т.д. Особенностью этих источников является создание равномерной зоны "радиопокрытия", что является ничем иным, как увеличением электромагнитного фона в окружающей среде.

Термин "глобальное электромагнитное загрязнение окружающей среды" официально введен в 1995 году Всемирной Организацией Здравоохранения (ВОЗ), включившей эту проблему в перечень приоритетных для человечества. В числе немногих всемирных проектов ВОЗ реализует Международный электромагнитный проект (WHO International EMF Project ), что подчеркивает актуальность и значение, придаваемое международной общественностью этой теме. В свою очередь практически все технически и культурно развитые страны реализуют свои национальные программы исследования биологического действия ЭМП и обеспечения безопасности человека и экосистем в условиях нового глобального фактора загрязнения окружающей среды.

Живые организмы в процессе эволюции приспособились к определенному уровню ЭМП, однако, резкое значительное повышение (в историческом аспекте) уровня ЭМП вызывает напряжение адаптационно-компенсаторных возможностей организма, долговременное действие этого фактора может привести к их истощению, что повлечет необратимые последствия на системном уровне.

Источники электромагнитных полей радиочастот и их характеристика

Источниками электромагнитных полей (ЭМП) являются: атмосферное электричество, радиоизлучения, электрические и магнитные поля Земли, искусственные источники (установки ТВЧ, радиовещание и телевидение, радиолокация, радионавигация и др.). Источниками излучения электромагнитной энергии являются мощные телевизионные и радиовещательные станции, промышленные установки высокочастотного нагрева, а также многие измерительные, лабораторные приборы. Источниками излучения могут быть любые элементы, включенные в высокочастотную цепь.

Токи высокой частоты применяют для плавления металлов, термической обработки металлов, диэлектриков и полупроводников и для многих других целей. Для научных исследований в медицине применяют токи ультравысокой частоты, в радиотехнике — токи ультравысокой и сверхвысокой частоты. Возникающие при использовании токов высокой частоты электромагнитные поля представляют определенную профессиональную вредность, поэтому необходимо принимать меры защиты от их воздействия на организм.

Токи высокой частоты создают в воздухе излучения, имеющие ту же электромагнитную природу, что и инфракрасное, видимое, рентгеновское и гамма-излучение. Различие между этими видами энергии — в длине волны и частоте колебаний, а значит, и в величине энергии кванта, составляющего электромагнитное поле. Электромагнитные волны, возникающие при колебании электрических зарядов (при прохождении переменных токов), называются радиоволнами. Электромагнитное поле характеризуется длиной волны l,м или частотой колебания f, Гц:

l = сТ == elf, или с == lf,

где с = 3 • 10s м/с — скорость распространения радиоволн, равная скорости света; f — частота колебаний, Гц;

Т = 1/λ — период колебаний.

Интервал длин радиоволн — от миллиметров до десятков километров, что соответствует частотам колебаний в диапазоне от 3 • 104 Гц до 3 • 1011 Гц (рис. 1).

Требования по ограничению облучения населения в условиях радиационной аварии - student2.ru Рис. 1 Интервал длин волн.

Интенсивность электромагнитного поля в какой-либо точке пространства зависит от мощности генератора и расстояния от него. На характер распределения поля в помещении влияет наличие металлических предметов и конструкций, которые являются проводниками, а также диэлектриков, находящихся в ЭМП.

Источники электромагнитных полей промышленной частоты в электроустановках сверхвысокого напряжения (СВН)

При эксплуатации электроэнергетических установок — открытых распределительных устройств (ОРУ) и воздушных ЛЭП напряжением выше 330 кВ — в пространстве вокруг токоведущих частей действующих электроустановок возникает сильное электромагнитное поле, влияющее на здоровье людей. В электроустановках напряжением ниже 330 кВ возникают менее интенсивные электромагнитные поля, не оказывающие отрицательного влияния на биологические объекты.

Эффект воздействия электромагнитного поля на биологический объект принято оценивать количеством элек­тромагнитной энергии, поглощаемой этим объектом при нахождении его в поле. При малых частотах (в данном случае 50 Гц) электромагнитное поле можно рассматривать состоящим из двух полей (электрического и магнитного), практически не связанных между собой. Электрическое поле возникает при наличии напряжения на токоведущих частях электроустановок, а магнитное — при прохождении тока по этим частям. Поэтому допустимо рассматривать отдельно друг от друга влияние, оказываемое ими на биологические объекты.

Установлено, что в любой точке поля в электроустановках сверхвысокого напряжения (50 Гц) .поглощенная телом человека энергия магнитного поля примерно в 50 раз меньше поглощенной им энергии электрического поля (в рабочих зонах открытых распределительных устройств и проводов ВЛ-750 кВ напряженность магнитного поля составляет 20—25 А/м при опасности вредного влияния 150—200 А/м).

На основании этого был сделан вывод, что отрицательное действие электромагнитных полей электроустановок сверхвысокого напряжения (50 Гц) обусловлено электрическим полем, то есть нормируется напряженность Е, кВ/м.

В различных точках пространства вблизи электроустановок напряженность электрического поля имеет разные значения и зависит от ряда факторов: номинального напряжения, расстояния (по высоте и горизонтали) рассматриваемой точки от токоведущих частей и др.

Воздействие электромагнитных полей на организм человека

Промышленная электротермия, в которой применяются токи радиочастот для электротермической обработки материалов и изделий (сварка, плавка, ковка, закалка, пайка металлов; сушка, спекание и склеивание неметаллов), широкое внедрение радиоэлектроники в народное хозяйство позволяют значительно улучшить условия труда, снизить трудоемкость работ, добиться высокой экономичности процессов производства. Однако электромагнитные излучения радиочастотных установок, воздействуя на организм человека в дозах, превышающих допустимые, могут явиться причиной профессиональных заболеваний. В результате возможны изменения нервной, сердечнососудистой, эндокринной и других систем организма человека.

Действие электромагнитных полей на организм человека проявляется в функциональном расстройстве центральной нервной системы; субъективные ощущения при этом — повышенная утомляемость, головные боли и т. п. Первичным проявлением действия электромагнитной энергии является нагрев, который может привести к изменениям и даже к повреждениям тканей и органов. Механизм поглощения энергии достаточно сложен. Возможны также перегрев организма, изменение частоты пульса, сосудистых реакций. Поля сверхвысоких частот могут оказывать воздействие на глаза, приводящее к возникновению катаракты (помутнению хрусталика). Многократные повторные облучения малой интенсивности могут приводить к стойким функциональным расстройствам центральной нервной системы. Степень биологического воздействия электромагнитных полей на организм человека зависит от частоты колебаний, напряженности и интенсивности поля, длительности его воздействия. Биологическое воздействие полей разных диапазонов неодинаково. Изменения, возникающие в организме под воздействием электромагнитных полей, чаще всего обратимы.

В результате длительного пребывания в зоне действия электромагнитных полей наступают преждевременная утомляемость, сонливость или нарушение сна, появляются частые головные боли, наступает расстройство нервной системы и др. При систематическом облучении наблюдаются стойкие нервно-психические заболевания, изменение кровяного давления, замедление пульса, трофические явления (выпадение волос, ломкость ногтей и т. п.).

Аналогичное воздействие на организм человека оказывает электромагнитное поле промышленной частоты в электроустановках сверхвысокого напряжения. Интенсивные электромагнитные поля вызывают у работающих нарушение функционального состояния центральной нервной системы, сердечнососудистой системы и периферической крови. При этом наблюдаются повышенная утомляемость, вялость, снижение точности рабочих движений, изменение кровяного давления и пульса, возникновение болей в сердце (обычно сопровождается аритмией), головные боли.

Предполагается, что нарушение регуляции физиологических функций организма обусловлено воздействием поля на различные отделы нервной системы. При этом повышение возбудимости центральной нервной системы происходит за счет рефлекторного действия поля, а тормозной эффект — за счет прямого воздействия поля на структуры головного и спинного мозга. Считается, что кора головного мозга, а также промежуточный мозг особенно чувствителен к воздействию поля.

Наряду с биологическим действием электрическое поле обусловливает возникновение разрядов между человеком и металлическим предметом, имеющим иной, чем человек, потенциал. Если человек стоит непосредственно на земле или на токопроводящем заземленном основании, то потенциал его тела практически равен нулю, а если он изолирован от земли, то тело оказывается под некоторым потенциалом, достигающим иногда нескольких киловольт.

Очевидно, что прикосновение человека, изолированного от земли, к заземленному металлическому предмету, равно как и прикосновение человека, имеющего контакт с землей, к металлическому предмету, изолированному от земли, сопровождается прохождением через человека в землю разрядного тока, который может вызывать болезненные ощущения, особенно в первый момент. Часто прикосновение сопровождается искровым разрядом. В случае прикосновения к изолированному от земли металлическому предмету большой протяженности (трубопровод, проволочная ограда на деревянных стойках и т. п. или большого размера металлическая крыша деревянного здания и пр.) сила тока, проходящего через человека, может достигать значений, опасных для жизни.

Нормирование электромагнитных полей

Исследованиями установлено, что биологическое действие одного и того же по частоте электромагнитного поля зависит от напряженности его составляющих (электрической и магнитной) или плотности потока мощности для диапазона более 300 МГц. Это является критерием для определения биологической активности электромагнитных излучений. Для этого электромагнитные излучения с частотой до 300 МГц разбиты на диапазоны, для которых установлены предельно допустимые уровни напряженности электрической, В/м, и магнитной, А/м, составляющих поля. Для населения еще учитывают их местонахождение в зоне застройки или жилых помещений.

Согласно ГОСТ 12.1.006—84, нормируемыми параметрами в диапазоне частот 60 кГц — 300 МГц являются напряженности Е и Н электромагнитного поля. На рабочих местах и в местах возможного нахождения персонала, профессионально связанного с воздействием электромагнитного поля, предельно допустимая напряженность этого поля в течение всего рабочего дня не должна превышать нормативных значений.

Эффект воздействия электромагнитного поля на биологический объект принято оценивать количеством электромагнитной энергии, поглощаемой этим объектом при нахождении его в поле. Вт:

Требования по ограничению облучения населения в условиях радиационной аварии - student2.ru

где σ— плотность потока мощности излучения электромагнитной энергии Вт/м2;

Sэф — эффективная поглощающая поверхность тела человека, м2.

В табл. 1 приведены предельно допустимые плотности потока энергии электромагнитных полей (ЭМП) в диапазоне частот 300МГц-300000ГГц время пребывания на рабочих местах и в местах возможного нахождения персонала, профессионально связанного с воздействием ЭМП.

Таблица 1

Нормы облучения УВЧ и СВЧ

Требования по ограничению облучения населения в условиях радиационной аварии - student2.ru

В табл. 2 приведено допустимое время пребывания человека в электрическом поле промышленной частоты сверхвысокого напряжения (400 кВ и выше)

Таблица 2.

Предельно допустимое время c напряжением 400 кВ и выше

Электрическая напряженность Е, кВ/м Допустимое время пребывания, мин Примечание
<5 Без ограничений  
  5—10 (рабочий день) <180 Остальное время рабочего дня человек находится в местах, где напряженность электрического поля меньше или равна 5 кВ/м
  10-15   <90 Остальное время рабочего дня человек находится в местах, где напряженность электрического поля меньше или равна 5 кВ/м
  15-20   <10 Остальное время рабочего дня человек находится в местах, где напряженность электрического поля меньше или равна 5 кВ/м
  20-25   <5 Остальное время рабочего дня человек находится в местах, где напряженность электрического поля меньше или равна 5 кВ/м

Ограничение времени пребывания человека в электромагнитном поле представляет собой так называемую «защиту временем».

Если напряженность поля на рабочем месте превышает 25 кВ/м или если требуется большая продолжительность пребывания человека в поле, чем указано в табл. 2, работы должны производиться с применением защитных средств — экранирующих устройств или экранирующих костюмов.

Пространство, в котором напряженность электрического поля равна 5 кВ/м и больше, принято называть опасной зоной или зоной влияния. Приближенно можно считать, что эта зона лежит в пределах круга с центром в точке расположения ближайшей токоведущей части, находящейся под напряжением, и радиусом R == 20 м для электроустановок 400—500 кВ и R = 30 м для электроустановок 750 кВ (рис. 2). На пересечениях линий электропередачи сверхвысокого (400—750 кВ) и ультравысокого (1150 кВ) напряжения с железными и автомобильными дорогами устанавливаются специальные знаки безопасности, ограничивающие зоны влияния этих воздушных линий.

Требования по ограничению облучения населения в условиях радиационной аварии - student2.ru Рис. 2. Радиусы опасных зон (зон влияния): а—источник влияния—открытое распределительное устройство или провода воздушной линии электропередачи; б — источник влияния — токове-дущие части аппаратов

Допустимое значение тока, длительно проходящего через человека и обусловленного воздействием электрического поля электроустановок сверхвысокого напряжения, составляет примерно 50—60 мкА, что соответствует напряженности электрического поля на высоте роста человека примерно 5 кВ/м. Если при электрических разрядах, возникающих в момент прикосновения человека к металлической конструкции, имеющей иной, чем человек, потенциал, установившийся ток не превышает 50— 60 мкА, то человек, как правило, не испытывает болевых ощущений. Поэтому это значение тока принято в качестве нормативного (допустимого).

Согласно ГОСТ 12.1.045-84., допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания персонала на рабочих местах. Предельно допустимый уровень напряженности электростатических полей ( Требования по ограничению облучения населения в условиях радиационной аварии - student2.ru ) устанавливается равным 60 кВ/м в течение 1 часа. При напряженности электростатических полей менее 20 кВ/м время пребывания в электростатических полях не регламентируется. В диапазоне напряженности от 20 до 60 кВ/м допустимое время пребывания персонала в электростатическом поле без средств защиты в часах определяется по формуле Требования по ограничению облучения населения в условиях радиационной аварии - student2.ru где Требования по ограничению облучения населения в условиях радиационной аварии - student2.ru - фактическое значение напряженности электростатического поля, кВ/м.

Измерение интенсивности электромагнитных полей

Для определения интенсивности электромагнитных полей, воздействующих на обслуживающий персонал, замеры проводят в зоне нахождения персонала по высоте от уровня пола (земли) до 2 м через 0,5 м. Для определения характера распространения и интенсивности полей в цехе, на участке, в кабине, помещении (лаборатории и др.) должны быть проведены измерения в точках пересечения координатной сетки со стороной в 1 м. Измерения проводят (при максимальной мощности установки) периодически, не реже одного раза в год, а также при приеме в эксплуатацию новых установок, изменениях в конструкции и схеме установки, проведении ремонтов и т. д.

Исследования электромагнитных полей на рабочих местах должны проводиться в соответствии с требованиями ГОСТ 12.1.002—84, ГОСТ 12.1.006—84 по методике, утвержденной Минздравом СССР.

Для измерения интенсивности электромагнитных полей радиочастот используется прибор ИЭМП-1. Этим прибором можно измерить напряженности электрического и магнитного полей вблизи излучающих установок в диапазоне частот 100 кГц—300 МГц для электрического поля и в диапазоне частот 100 кГц — 1,5 МГц — для магнитного поля. С помощью данного прибора можно установить зону, в пределах которой напряженность поля выше допустимой.

Плотность потока мощности в диапазоне УВЧ—СВЧ измеряют прибором ПО-1, с помощью которого можно определить среднее по времени значение σ, Вт/м2.

Измерения напряженности электрического поля в электроустановках сверхвысокого напряжения производят приборами типа ПЗ-1, ПЗ-1 м и др.

Измеритель напряженности электрического поля работает следующим образом. В антенне прибора электрическое поле создает ЭДС, которая усиливается с помощью транзисторного усилителя, выпрямляется полупроводниковыми диодами и измеряется стрелочным микроамперметром. Антенна представляет собой симметричный диполь, выполненный в виде двух металлических пластин, размещенных одна над другой. Поскольку наведенная в симметричном диполе ЭДС. пропорциональна напряженности электрического поля, шкала миллиамперметра отградуирована в киловольтах на метр (кВ/м).

Измерение напряженности должно производиться во всей зоне, где может находиться человек в процессе выполнения работы. Наибольшее измеренное значение напряженности является определяющим. При размещении рабочего места на земле наибольшая напряженность обычно бывает на высоте роста человека. Поэтому замеры рекомендуется производить на высоте 1,8 м от уровня земли.

Напряженность электрического поля, кВ/м, для любой точки можно определить из выражения Требования по ограничению облучения населения в условиях радиационной аварии - student2.ru

где τ — линейная плотность заряда провода, Кл/м; ε0 = 8,85 • 1012 — электрическая постоянная, Ф/м;

m— кратчайшее расстояние от провода до точки, в которой определяется напряженность, м.

Это выражение предусматривает определение напряженности электрического поля уединенного бесконечно длинного прямолинейного проводника, заряженного равномерно по длине. Вводя соответствующие поправки, можно с достаточной точностью определить уровни напряженности электрического поля в заданных точках линии и подстанции сверхвысокого напряжения в реальных условиях.

Методы защиты от электромагнитных полей

Основные меры защиты от воздействия электромагнитных излучений:

· уменьшение излучения непосредственно у источника (достигается увеличением расстояния между источником направленного действия и рабочим местом, уменьшением мощности излучения генератора);

· рациональное размещение СВЧ и УВЧ установок (действующие установки мощностью более 10 Вт следует размещать в помещениях с капитальными стенами и перекрытиями, покрытыми радиопоглощающими материалами — кирпичом, шлакобетоном, а также материалами, обладающими отражающей способностью - масляными красками и др.);

· дистанционный контроль и управление передатчиками в экранированном помещении (для визуального наблюдения за передатчиками оборудуются смотровые окна, защищенные металлической сеткой);

· экранирование источников излучения и рабочих мест (применение отражающих заземленных экранов в виде листа или сетки из металла, обладающего высокой электропроводностью — алюминия, меди, латуни, стали);

· организационные меры (проведение дозиметрического контроля интенсивности электромагнитных излучений — не реже одного раза в 6 месяцев; медосмотр — не реже одного раза в год; дополнительный отпуск, сокращенный рабочий день, допуск лиц не моложе 18 лет и не имеющих заболеваний центральной нервной системы, сердца, глаз);

· применение средств индивидуальной защиты (спецодежда, защитные очки и др.).

У индукционных плавильных печей и нагревательных индукторов (высокие частоты) допускается напряженность поля до 20 В/м. Предел для магнитной составляющей напряженности поля должен быть 5 А/м. Напряженность ультравысокочастотных электромагнитных полей (средние и длинные волны) на рабочих местах не должна превышать 5 В/м.

Каждая промышленная установка снабжается техническим паспортом, в котором указаны электрическая схема, защитные приспособления, место применения, диапазон волн, допустимая мощность и т. д. По каждой установке ведут эксплуатационный журнал, в котором фиксируют состояние установки, режим работы, исправления, замену деталей, изменения напряженности поля. Пребывание персонала в зоне воздействия электромагнитных полей ограничивается минимально необходимым для проведения операций временем.

Новые установки вводят в эксплуатацию после приемки их, при которой устанавливают выполнение требований и норм охраны труда, норм по ограничению полей и радиопомех, а также регистрации их в государственных контролирующих органах.

Генераторы токов высокой частоты устанавливают в отдельных огнестойких помещениях, машинные генераторы — в звуконепроницаемых кабинах. Для установок мощностью до 30 кВт отводят площадь не менее 40 м2, большей мощности — не менее 70 м2. Расстояние между установками должно быть не менее 2 м, помещения экранируют, в общих помещениях установки размещают в экранированных боксах. Обязательна общая вентиляция помещений, а при наличии вредных выделений — и местная. Помещения высокочастотных установок запрещается загромождать металлическими предметами. Наиболее простым и эффективным методом защиты от электромагнитных полей является «защита расстоянием». Зная характеристики металла, можно рассчитать толщину экрана S, мм, обеспечивающую заданное ослабление электромагнитных полей на данном расстоянии: Требования по ограничению облучения населения в условиях радиационной аварии - student2.ru

где ω = 2nf — угловая частота переменного тока, рад/с;

μ — магнитная проницаемость металла защитного экрана, Г/м;

γ — электрическая проводимость металла экрана (Ом • м)-1;

Эх—эффективность экранирования на рабочем месте, определяемая из выражения: Эх = Нх,/ Нхэ,

где Нх и Нхэ — максимальные значения напряженности магнитной составляющей поля на расстоянии х, м от источника соответственно без экрана и с экраном, А/м.

Напряженность Нх может быть определена из выражения:

Нх = wIa2 bm / 4x2 ,

где w и а — число витков и радиус катушки, м;

I — сила тока в катушке, А;

х — расстояние от источника (катушки) до рабочего места, м;

bm — коэффициент, определяемый соотношением х/а (при х/а > 10 bm = 1).

Если регламентируется допустимая электрическая составляющая поля Eд, магнитная составляющая может быть определена из выражения:

Hд =1,27*105 (Eд /xf), где f — частота поля, Гц.

Экранирование — наиболее эффективный способ защиты. Электромагнитное поле ослабляется экраном вследствие создания в толще его поля противоположного направления. Степень ослабления электромагнитного поля зависит от глубины проникновения высокочастотного тока в толщу экрана. Чем больше магнитная проницаемость экрана и выше частота экранируемого поля, тем меньше глубина проникновения и необходимая толщина экрана. Экранируют либо источник излучений, либо рабочее место. Экраны бывают отражающие и поглощающие.

Для защиты работающих от электромагнитных излучений применяют заземленные экраны, кожухи, защитные козырьки, устанавливаемые на пути излучения. Средства защиты (экраны, кожухи) из радиопоглощающих материалов выполняют в виде тонких резиновых ковриков, гибких или жестких листов поролона, ферромагнитных пластин.

Для защиты от электрических полей сверхвысокого напряжения (50 Гц) необходимо увеличивать высоту подвеса фазных проводов ЛЭП. Для открытых распределительных устройств рекомендуются заземленные экраны

(стационарные или временные) в виде козырьков, навесов и перегородок из металлической сетки возле коммутационных аппаратов, шкафов управления и контроля. К средствам индивидуальной защиты от электромагнитных излучений относят переносные зонты, комбинезоны и халаты из металлизированной ткани, осуществляющие защиту организма человека по принципу заземленного сетчатого экрана.

Заключение

Термин “электромагнитное загрязнение окружающей среды” объективно отражает новые экологические условия, сложившиеся на Земле в условиях воздействия электромагнитного поля (ЭМП) на человека и все элементы биосферы.

В настоящее время проблема электромагнитной безопасности и защиты окружающей природной среды от воздействия ЭМП приобрела большую актуальность и социальную значимость, в том числе на международном уровне.

Технологическое развитие информационного общества привело к тому, что в условиях постоянного воздействия ЭМП находится значительная часть экосистем, особенно в условиях городов, на прилегающих к городам территориях, а также локально в практически незаселенных условиях. Анализ опубликованных данных, собственный опыт наблюдения и измерений ЭМП в условиях различных местностей показывает наличие высоких уровней ЭМП, в том числе тепловых значений, в местах недоступных для человека, но заселенных представителями флоры и фауны. Однако нормирование ЭМП как физического фактора внешней среды проводится только с целью его санитарно-гигиенической оценки для человека, а экологические нормативы для источников ЭМП в нашей стране отсутствуют.

Проведенный анализ экспериментальных работ показывают, что ЭМП является весьма чувствительным фактором для всех элементов биоэкосистем от человека до простейших.

Так действие ЭМП на насекомых свидетельствует о том, что этот фактор может вызывать изменения в поведении, действуя на уровни информационных отношений между особями, может оказывать чисто физическое действие в силу особенностей строения тела и жизнедеятельности насекомых; может также оказывать на некоторые физиологические характеристики (обмен веществ, рост и развитие). Возможно также некоторое действие ЭМП на генетическом уровне.

Как слабые, так и сильные ЭМП оказывают достаточно выраженное влияние на морфологические, физиологические, биохимические и биофизические характеристики многих растений. Влияют на рост, развитие и размножение растительных объектов. Что касается истинно генетических последствий, то однозначного ответа на этот вопрос пока нет. Подавляющее большинство исследований обнаруживает высокую чувствительность различных микроорганизмов к достаточно слабым полям. Однако нет систематических и крайне мало достоверных данных о наличии эффектов, направлению реакций и последующих изменений в связи с параметрами действующих ЭМП.

Необходимо подчеркнуть, что значительная часть представителей фауны, в отличие от человека, обладает прямыми рецепторами ЭМП и использует естественные ЭМП для поддержания нормальной жизнедеятельности. По мнению авторов, такие виды являются наиболее уязвимыми в ситуации электромагнитного загрязнения.

Решение проблемы электромагнитного загрязнения окружающей среды является комплексной задачей, затрагивающей социальные и экономические интересы различных отраслей и ведомств, требующей междисциплинарных подходов и привлечения специалистов разного профиля. Особенностью проблемы является то, что основными источниками электромагнитного загрязнения окружающей среды являются наиболее динамично развивающиеся отрасли (связь, энергетика) со значительными привлеченными капиталами и инвестициями, как в техническую инфраструктуру, так и в целом в экономику отраслей. В связи с этим, для реального решения проблемы крайне необходимо иметь полномочный орган государственной координации работ.

Наши рекомендации