Использование ядерного оружия как средства массового поражения
Ядерное оружие относится к оружию массового поражения, так как наносит поражение огромному количеству живых организмов и растений, а также производит разрушения на значительных территориях. Ядерными боеприпасами снаряжаются средства воздушно-космического нападения (бомбы, ракеты), торпеды, ядерные мины (фугасы).
В зависимости от способа получения ядерной энергии ЯБПделятна ядерные и термоядерные.
Ядерные боеприпасы основаны на принципе деления ядерного горючего (в основном, тяжелых элементов таблицы Менделеева, относительная масса которых больше, чем у урана).
Термоядерные боеприпасы имеют мощность на порядок выше, в них ЯБПчасто играют роль взрывателя, а принцип действия основан на синтезе легких элементов (дейтерий, тритий, литий).
Ядерное оружие состоит из ядерных боеприпасов, средств доставки их к цели (носителей) и средств управления. Ядерные боеприпасы (боевые части ракет и торпед, ядерные бомбы, артснаряды, мины и др.) относятся к самым мощным средствам массового поражения.
Действия их основаны на использовании внутриядерной энергии, выделяющейся при цепных реакциях деления тяжелых ядер некоторых изотопов урана и плутония или при термоядерных реакциях синтеза легких ядер — изотопов водорода (дейтерия, трития).
Мощностьядерных боеприпасов принято измерять тротиловым эквивалентом, т. е. количеством обычного взрывчатого вещества (тротила), при взрыве которого выделяется столько же энергии, что и при взрыве данного ядерного боеприпаса.
Тротиловый эквивалент выражается в тоннах, килотоннах и мегатоннах. По мощности ядерные боеприпасы условно подразделяют на: сверхмалые (мощностью до 1 кт); малые (1—10 кт); средние (10—100 кт); крупные (100 кт—1 Мт) и сверхкрупные (мощностью свыше 1 Мт).
Масштабы возможных поражений зависят от мощности и вида взрыва, степени защищенности объекта, места расположения, а также от среды, в которой произошел взрыв, и ряда других причин.
В зависимости от решаемых задач ядерный взрыв может быть произведен
- в разреженных слоях атмосферы или в космосе,
- в плотных (приземных) слоях атмосферы у поверхности земли (воды) или
- землей (под водой).
Различают высотный, воздушный, наземный (надводный) и подземный (подводный) взрывы.
Очаг ЯП характеризуется:
□ массовым поражением всего живого;
□ разрушением и повреждением наземных объектов;
□ частичным разрушением, завалом или повреждением ЗС ГО;
□ возникновением отдельных, сплошных или массовых пожаров;
□ образованием завалов в жилых районах и на ОЭ;
□ возникновением массовых аварий на энергокоммунальных сетях;
□ образованием районов, полос или пятен РЗ на местности.
Поражающее действие ядерного взрыва определяется
- механическим воздействием ударной волны,
- тепловым воздействием светового излучения,
- радиационным воздействием проникающей радиации и
- радиоактивного заражения.
Для некоторых элементов объектов поражающим фактором является электромагнитное излучение (электромагнитный импульс) ядерного взрыва.
Распределение энергии между поражающими факторами ядерного взрыва зависит от вида взрыва и условий, в которых он происходит. При взрыве в атмосфере примерно 50% энергии взрыва расходуется на образование ударной волны, 30—40% — на световое излучение, до 5% — на проникающую радиацию и электромагнитный импульс и до 15% — на радиоактивное заражение.
Ударная волна — это область резкого сжатия среды, которая в в виде сферического слоя распространяется во все стороны от места взрыва со сверхзвуковой скоростью. В зависимости от среды распространения различают ударную волну в воздухе, в воде или грунте (сейсмовзрывные волны).
Ударная волнав воздухе образуетсяза счет колоссальной энергии, выделяемой в зоне реакции, где исключительно высокая температура, а давление достигает миллиардов атмосфер (до 105 млрд. Па). Раскаленные пары и газы, стремясь расшириться, производят резкий удар по окружающим слоям воздуха, сжимают их до больших давления и плотности и нагревают до высокой температуры. Эти слои воздуха приводят в движение последующие слои. И так сжатие и перемещение воздуха происходит от одного слоя к другому во все стороны от центра взрыва, образуя воздушную ударную волну. Расширение раскаленных газов происходит в сравнительно малых объемах, поэтому их действие на более заметных удалениях от центра ядерного взрыва исчезает и основным носителем действия взрыва становится воздушная ударная волна. Вблизи центра взрыва скорость распространения ударной волны в несколько раз превышает скорость звука в воздухе. С увеличением расстояния от места взрыва скорость распространения волны быстро падает, а ударная волна ослабевает; на больших удалениях ударная волна переходит, по существу, в обычную акустическую волну и скорость ее распространения приближается к скорости звука в окружающей среде, т. е. к 340 м/с. Воздушная ударная волна при ядерном взрыве средней мощности проходит примерно 1000 м за 1,4 с, 2000 м — за 4 с, 3000 м — за 7 с, 5000 м— за 12 с. Отсюда следует, что человек, увидев вспышку ядерного взрыва, за время до прихода ударной волны, может занять ближайшее укрытие (складку местности, канаву, кювет, простенок и т. п.) и тем самым уменьшить вероятность поражения ударной волной.
Непосредственно за фронтом ударной волны, в области сжатия, движутся массы воздуха. Вследствие торможения этих масс воздуха, при встрече с преградой возникает давление скоростного напора воздушной ударной волны. Когда фронт ударной волны достигает Данной точки пространства (преграды), скоростной (ветровой) напор, как и избыточное давление, моментально поднимается от нуля до максимального значения. По мере удаления от фронта скоростной напор уменьшается до нуля несколько позднее, нежели избыточное давление. Это объясняется инерцией движущегося за фронтом ударной волны воздуха. Однако для оценки разрушающего действия воздушной ударной волны ядерного взрыва эта разница несущественна и при расчетах принимают продолжительность воз-1ействия скоростного напора равным времени действия фазы сжатия.
Ударная волна может нанести незащищенным людям и животным травматические поражения, контузии или быть причиной их гибели. Поражения могутбыть непосредственными или косвенными.
Непосредственное поражение ударной волной возникает в результате воздействия избыточного давления и скоростного напора воздуха. Ввиду небольших размеров тела человека ударная волна почти мгновенно охватывает человека и подвергает его сильному сжатию. Процесс сжатия продолжается со снижающейся интенсивностью в течение всего периода фазы сжатия, т. е. в течение нескольких секунд. Мгновенное повышение давления в момент прихода ударной волны воспринимается живым организмом как резкий удар. В то же самое время скоростной напор создает значительное лобовое давление, которое может привести к перемещению тела в пространстве.
Косвенные поражения люди и животные могут получить в результате ударов обломками разрушенных зданий и сооружений или в результате ударов летящих с большой скоростью осколков стекла, шлака, камней, дерева и других предметов. Например, при избыточном давлении во фронте ударной волны 35 кПа плотность летящих осколков достигает 3500 шт. на квадратный метр при средней скорости перемещения этих предметов 50 м/с.
Характер и степень поражения незащищенных людей и животных зависят от мощности и вида взрыва, расстояния, метеоусловий, а также от места нахождения (в здании, на открытой местности) и положения (лежа, сидя, стоя) человека.
Воздействие воздушной ударной волны на незащищенных людей характеризуется легкими, средними, тяжелыми и крайне тяжелыми травмами.
Разрушение постройки 20-30 кПа.
Световое излучение ядерного взрыва при непосредственном воздействии вызывает ожоги открытых участков тела, временное ослепление или ожоги сетчатки глаз. Возможны вторичные ожоги, возникающие от пламени горящих зданий, сооружений, растительности, воспламенившейся или тлеющей одежды.
Световое (тепловое) излучениепредставляет собой поток ультрафиолетовых, инфракрасных и видимых лучей; на его образование используется 30 % энергии взрыва. Источником светового излучения является огненный шар, состоящий из раскаленных продуктов взрыва и воздуха, нагретых до температуры 8000-10000 0С. Время действия светового излучения зависит от мощности взрыва (например, при мощности 20 кг - 3 с, при мощности 1 Мт — 10 с).
Основным параметром, определяющим поражающую способность светового: излучения ядерного взрыва, является световой импульс (Uс) — количество световой энергии, падающей на 1 м2 поверхности, перпендикулярной направлению световых лучей, за все время свечения. Световой импульс измеряется в джоулях на 1 м2 (Дж/м2) или в калориях (несистемная единица) на 1 см2(кал/см2); 1 кал/см2 = 42 кДж/м2. Наибольшее действие светового излучения наблюдается при воздушном взрыве в прозрачной атмосфере.
Тепловое действие на здания и сооружения определяется энергией светового импульса; Характер воздействия на здания зависит не только от величины светового импульса, но и от времени его действия, а также от плотности, теплопроводности, цвета и толщины материала. К материалам, способным легко воспламеняться от светового излучения, относятся: горючие газы, бумага, сухая трава, солома, резина, дерево. Воспламенение материалов приводит к пожару.
Пожары могут возникнуть и от вторичных факторов при избыточных давлениях в 10 кПа или более. Возгорание материалов происходит при Uс = 125 кДж/м2 или более. Импульсы светового излучения наблюдаются в ясную погоду далеко за пределами очага поражения.
Световое излучение по своей природе поток лучистой энергии оптического диапазона (близок к спектру солнечного излучения). Источник светового излучения — светящаяся область взрыва, состоящая из нагретых до высокой температуры веществ ядерного боеприпаса, воздуха -и грунта (при наземном взрыве).
Температура светящейся области в течение некоторого времени сравнима с температурой поверхности солнца (максимум 8000—10000 и минимум 1800°С). Размеры светящейся области и ее температура быстро изменяются во времени. Продолжительность светового излучения зависит от мощности и вида взрыва и может продолжаться до десятков секунд. При воздушном взрыве ядерного боеприпаса мощностью 20 кт световое излучение продолжается 3 с, термоядерного заряда 1 Мт—10 с.
Поражающее действие светового излучения характеризуется световым импульсом. Световой импульс—количество энергии прямого светового излучения ядерного взрыва, падающей за все время излучения на единицу площади неподвижной и неэкранируемой поверхно-.сти, расположенной перпендикулярно направлению излучения. Единица светового импульса — джоуль на квадратный метр (Дж/м2).
Независимо от причин возникновения,ожоги разделяют по тяжести поражения организма.
Ожоги первой степени выражаются в болезненности, покраснении и припухлости кожи. Они не представляют серьезной опасности и быстро вылечиваются без каких-либо последствий. При ожогах второй степени образуются пузыри, заполненные прозрачной белковой жидкостью; при поражении значительных участков кожи человек может потерять на некоторое время трудоспособность и нуждается в специальном лечении. Пострадавшие с ожогами первой и второй степеней, достигающими даже 50—60 % поверхности кожи, обычно выздоравливают. Ожоги третьей степени характеризуются омертвлением кожи с частичным поражением росткового слоя. Ожоги четвертой степени: омертвление кожи и более глубоких слоев тканей (подкожной клетчатки, мышц, сухожилий костей). Поражение ожогами третьей и четвертой степени значительной части кожного покрова может привести к смертельному исходу.
Одежда людей и шерстяной покров животных защищает кожу от ожогов. Поэтому ожоги чаще бывают у людей на открытых частях тела, а у животных — на участках тела, покрытых коротким и редким волосом.
Импульсы светового излучения, необходимые для поражения кожи животных, покрытой волосяным покровом, более высокие.
Степень ожогов световым излучением закрытых участков кожи зависит от характера одежды, ее цвета, плотности и толщины. Люди, одетые в свободную одежду светлых тонов, одежду из шерстяных тканей, обычно меньше поражены световым излучением, чем люди, одетые в плотно прилегающую одежду темного цвета или прозрачную, особенно одежду из синтетических материалов.
Поражение глаз человека может быть в виде временного ослепления — под влиянием яркой световой вспышки.
В солнечный день ослепление длится 2—5 мин, а ночью, когда зрачок сильно расширен и через него проходит больше света,— до 30 мин и более. Более тяжелое (необратимое) поражение — ожог глазного дна — возникает в том случае, когда человек или животное фиксирует свой взгляд на вспышке взрыва.
Энергия светового импульса, падая на поверхность предмета, частично отражается его поверхностью, поглощается им и проходит через него, если предмет прозрачный. Поэтому характер (степень) поражения элементов объекта зависит как от светового импульса и времени его действия, так и от плотности, теплоемкости, теплопроводности, толщины, цвета, характера обработки материалов, расположения поверхности к падающему световому излучению,— всего, что будет определять степень поглощения световой энергии ядерного взрыва.
Пожары на объектах и в населенных пунктах возникают от светового излучения и вторичных факторов, вызванных воздействием ударной волны. Наименьшее избыточное давление, при котором могут возникнуть пожары от вторичных причин,— 10 кПа (0,1 кгс/см2). Возгорание материалов может наблюдаться при световых импульсах 125 кДж (3 кал/см2) и более. Эти импульсы светового излучения в ясный солнечный день наблюдаются на значительно больших расстояниях, чем избыточное давление во фронте ударной волны 10 кПа.
Так, при воздушном ядерном взрыве мощностью 1 Мт в ясную солнечную погоду деревянные строения могут воспламеняться на расстоянии до 20 км от центра взрыва, автотранспорт — до 18 км, сухая трава, сухие листья и гнилая древесина в лесу — до 17 км. Тогда, как действие избыточного давления 10 кПа для данного взрыва отмечается на расстоянии 11 км. Большое влияние на возникновение пожаров оказывает наличие горючих материалов на территории объекта и внутри зданий и сооружений.
Световые лучи на близких расстояниях от центра взрыва падают под большим углом к поверхности земли; на больших расстояниях — практически параллельно поверхности земли. В этом случае световое излучение проникает через застекленные проемы в помещения и может воспламенять горючие материалы, изделия и оборудование в цехах предприятий (большинство' сортов хозяйственных тканей, резины и резиновых изделий загорается при световом импульсе 250—420 кДж/м2 (6—10 кал/см2).
Проникающая радиация один из поражающих факторов ядерного оружия, представляющий собой гамма-излучение и поток нейтронов, испускаемых в окружающую среду из зоны ядерного взрыва. Кроме гамма-излучения и потока нейтронов выделяются ионизирующие излучения в виде альфа- и бета-частиц, имеющих малую длину свободного пробега, вследствие чего их воздействием на людей и материалы пренебрегают. Время действия проникающей радиации не превышает 10—15 с с момента взрыва.
На зараженной местности может происходить внешнее и внутреннее облучение людей и животных. Внешнее γ-облучение вызывает лучевую болезнь, а при внешнем воздействии β-частиц наиболее часто отмечаются поражения кожи на руках, шее, голове; у животных - на спине, а также — от соприкосновения с радиоактивной травой — на морде.
Внутреннее поражение людей и животных радиоактивными веществами может произойти при попадании их внутрь организма. Особенно много радиоактивных продуктов концентрируется у человека в тканях щитовидной железы (в 1000-10 000 раз больше, чем в других тканях).
При взрывах ядерных боеприпасов средней и большой мощности зоны поражения проникающей радиации несколько меньше зон поражения ударной волной и световым излучением. Для боеприпасов малой мощности, наоборот, зоны поражения проникающей радиации превосходят зоны поражения ударной волной и световым излучением.
Проникающая радиация может вызывать обратимые и необратимые изменения в материалах, элементах радиотехнической, электротехнической, оптической и другой аппаратуры. В космическом пространстве эти повреждения могут наблюдаться на расстояниях десятков и сотен километров от центра взрывов мегатонных боеприпасов
При воздушных (приземных) и наземных ядерных взрывах плотности потоков (дозы) проникающей радиации на тех расстояниях, где ударная волна выводит из строя здания, сооружения, оборудование и другие элементы производства, в большинстве случаев для объектов являются безопасными. Но с увеличением высоты взрыва все большее значение в поражении объектов приобретает проникающая радиация. При взрывах на больших высотах и в космосе основным поражающим фактором становится импульс проникающей радиации.
Необратимые изменения в материалах вызываются нарушениями структуры кристаллической решетки вещества вследствие возникновения дефектов (в неорганических и полупроводниковых материалах), а также в результате прохождения различных физико-химических процессов. Такими процессами являются: радиационный нагрев, происходящий вследствие преобразования поглощенной энергии проникающей радиации в тепловую; окислительные химические реакции, приводящие к окислению контактов и поверхностей электродов; деструкция и «сшивание» молекул в полимерных материалах, приводящие к изменению физико-механических и электрических параметров; газовыделения и образование пылеобразных продуктов, которые могут вызвать вторичные факторы воздействия (взрывы в замкнутых объемах, запыление отдельных деталей приборов и т. д.).
Обратимые изменения, как правило, являются следствием ионизации материалов и окружающей среды. Они проявляются в увеличении концентрации носителей тока, что приводит к возрастанию утечки тока, снижению сопротивления в изоляционных, полупроводниковых, проводящих материалах и газовых промежутках. Обратимые изменения в материалах, элементах и аппаратуре в целом могут возникать при мощностях экспозиционных доз 1000 Р/с. Проводимость воздушных промежутков и диэлектрических материалов начинает существенно увеличиваться при мощностях доз 10 000 Р/с и более.
Проникающая радиация, проходя через различные среды (материалы), ослабляется. Степень ослабления зависит от свойств материалов и толщины защитного слоя.
Нейтроны ослабляются в основном за счет столкновения с ядрами атомов. Вероятность процессов взаимодействия нейтронов с ядрами количественно характеризуется эффективным сечением взаимодействия и зависит главным образом от энергии нейтронов и природы ядер мишени.
Энергия гамма-квантов при прохождении их через вещества расходуется в основном на взаимодействие с электронами атомов. Поэтому степень их ослабления практически обратно пропорциональна плотности материала.
Защитные свойства материала характеризуются слоем половинного ослабления, при прохождении которого интенсивность гамма-лучей или нейтронов уменьшается в два раза.
Если защитная преграда состоит из нескольких слоев различных материалов, например грунта, бетона и дерева, то подсчитывают степень ослабления для каждого слоя в отдельности и результаты перемножают:
Защитные сооружения ГО надежно обеспечивают защиту людей от проникающей радиации. Расчет защитных свойств этих сооружений производится по гамма-излучению, так как доза гамма-излучения значительно выше дозы нейтронного излучения, а слои половинного ослабления для строительных материалов приблизительно одинаковы.
Радиоактивное заражение возникает в результате выпадения радиоактивных веществ (РВ) из облака ядерного взрыва.
Основные источники радиоактивности при ядерных взрывах: продукты деления веществ, составляющих ядерное горючее (200 радиоактивных изотопов 36 химических элементов); наведенная активность, возникающая в результате воздействия потока нейтронов ядерного взрыва на некоторые химические элементы, входящие в состав грунта (натрий, кремний и др.); некоторая часть ядерного горючего, которая не участвует в реакции деления и попадает в виде мельчайших частиц в продукты взрыва. Излучение радиоактивных веществ состоит из трех видов лучей: альфа, бета и гамма. Наибольшей проникающей способностью обладают гамма-лучи (в воздухе они проходят путь в несколько сот метров), меньшей — бета-частицы (несколько метров) и незначительной — альфа-частицы (несколько сантиметров). Поэтому основную опасность для людей при радиоактивном заражении местности представляют гамма- и бета-излучения.
Радиоактивное заражение имеет ряд особенностей, отличающих его от других поражающих факторов ядерного взрывав К ним относятся: большая площадь поражения — тысячи и десятки тысяч квадратных километров; длительность сохранения поражающего действия — дни, недели, а иногда и месяцы; трудности обнаружения радиоактивных веществ, не имеющих цвета, запаха и других внешних признаков.
Зоны радиоактивного заражения образуются в районе ядерного взрыва и на следе радиоактивного облака. Наибольшая зараженность местности РВ будет при наземных и подземных (произведенных на небольшой глубине), надводных и подводных ядерных взрывах. Зараженность местности РВ может также возникнуть в результате применения противником радиологического оружия.
При наземном (подземном) ядерном взрыве огненный шар касается поверхности земли. Окружающая среда сильно нагревается, значительная часть грунта и скальных пород испаряется и захватывается огненным шаром. Радиоактивные вещества оседают на расплавленных частицах грунта. В результате образуется мощное облако, состоящее из огромного количества радиоактивных и неактивных оплавленных частиц, размеры которых колеблются от нескольких микрон до нескольких миллиметров. В течение 7—10 мин радиоактивное облако поднимается и достигает своей максимальной высоты, стабилизируется, приобретая характерную грибовидную форму, и под действием воздушных потоков перемещается с определенной скоростью и в определенном направлении. Большая часть радиоактивных осадков, которая вызывает сильное заражение местности, выпадает из облака в течение 10—20 ч после ядерного взрыва.
При выпадении РВ из облака ядерного взрыва происходит заражение поверхности земли, воздуха, водоисточников, материальных ценностей и т. п.
Масштабы и степень радиоактивного заражения местности зависят от мощности и вида взрыва, особенностей конструкции боеприпаса, характера поверхности, над которой (на которой) произведен взрыв, метеорологических условий и времени, прошедшего после взрыва.
Действие продуктов ядерного взрыва на людей, животных и растения. На следе радиоактивного облака поражающим действием обладают: а) гамма-излучения, вызывающие общее внешнее облучение; б) бета-частицы, вызывающие при внешнем воздействии радиационное поражение кожи, а при попадании бета-частиц внутрь организма — поражение внутренних органов; в) альфа-частицы, представляющие опасность при попадании внутрь организма.
Как и проникающая радиация в районе ядерного взрыва, общее внешнее гамма-облучение на радиоактивнозараженной местности вызывает у людей и животных лучевую болезнь. Дозы излучения, вызывающие заболевания, такиеже. как и от проникающей радиации.
При внешнем воздействии бета-частиц у людей наиболее часто отмечаются поражения кожи на руках, в области шеи, на голове; у животных — на спине, а также на морде при соприкосновении ее с радиоактивно зараженной травой. Различают кожные поражения тяжелой (появление незаживающих язв), средней (образование пузырей) и легкой (посинение и зуд кожи) степени.
Внутреннее поражение людей и животных РВ может произойти при попадании их внутрь организма главным образом с пищей и кормом. С воздухом и водой РВ в организм, по-видимому, будут попадать в таких количествах, которые не вызовут острого лучевого: поражения с потерей трудоспособности (боеспособности) людей или продуктивности животных. Всасывающиеся радиоактивные продукты ядерного взрыва распределяются в организме крайне неравномерно.
Особенно много концентрируется их в щитовидной железе (в 1000—10 000 раз больше, чем в других тканях) и печени (в 10—100 раз больше, чем в других органах). В связи с этим указанные органы подвергаются облучению в очень больших дозах, приводящему либо к разрушению ткани, либо к развитию опухолей (щитовидная железа), либо к серьезному нарушению функций (печень и др.).
Радиоактивная пыль заражает почву и растения. В зависимости от размеров частиц на поверхности растений может задерживаться от 8 до 25 % выпавшей на землю радиоактивной пыли. Возможно и частичное всасывание радиоактивных веществ внутрь растений. Лучевое поражение у растений проявляется в торможении роста и замедлении развития, снижении урожая, понижении репродуктивного качества семян, клубней, корнеплодов. При больших дозах излучения возможна гибель растений, проявляющаяся в 'остановке роста и усыхании.
Основным способом защиты населения следует считать изоляцию людей от внешнего воздействия радиоактивных излучений, а также исключение условий, при которых возможно попадание радиоактивных веществ внутрь организма человека вместе с воздухом и пищей.
Электромагнитный импульс (ЭМИ) представляет собой электрические и магнитные поля, возникающие в результате воздействия γ-излучения и нейтронов на атомы окружающей среды и образования потока электронов и положительных ионов (рис. 8.3). На ЭМИ расходуется около 5 % энергии взрыва.
Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в различных проводниках, которые выводят из строя потребители электроэнергии. Время действия ЭМИ — менее 1 с. Выходят из строя системы электроснабжения, связи, различные электрические устройства и приборы. При наземном и воздушном взрывах поражающее воздействие ЭМИ — в радиусе нескольких километров, при высотном взрыве — несколько сотен километров. Защитой от ЭМИ служат специальные автоматические устройства — подобные применяемым для зашиты от грозовых разрядов, экраны, плавкие вставки и др.
В результате действия воздушной ударной волны и светового (теплового) излучения могут возникнуть вторичные поражающие факторы. Такими факторами являются пожары, возникающие под воздействием светового излучения и при разрушении электрокоммуникаций, емкостей и трубопроводов с легковоспламеняющимися веществами; взрывы; заражение местности и атмосферы ядовитыми веществами, которые применяются в производстве; разрушение оборудования от ударов падающих конструкций зданий; затопления при разрушении плотин гидроузлов. Поражающее воздействие вторичных факторов в некоторых случаях превосходит непосредственное поражающее действие ядерного взрыва.
Поражающее действие нейтронных боеприпасов.
Разновидность ядерного оружия — нейтронные боеприпасы (с термоядерным зарядом малой мощности), поражающее действие которых в основном определяется воздействием потока быстрых нейтронов и гамма лучей. Это так называемое «гуманное» оружие повышенной радиации планируется стратегами для поражения живой силы противника при максимальном сохранении материальных ценностей. Например, при взрыве нейтронного боеприпаса мощностью 1 кт за пределами радиуса 500 м основным поражающим фактором является проникающая радиация: в радиусе до 1 км люди будут погибать от действия потока нейтронов и гамма лучей, а в радиусе до 2 км — получать тяжелую лучевую болезнь, в результате которой большая часть людей погибнет в течение нескольких недель.
Распределение энергии между поражающими факторами ядерного взрыва зависит от вида взрыва и условий, в которых он происходит. При взрыве в атмосфере примерно 50% энергии взрыва расходуется на образование ударной волны, 30—40% — на световое излучение, до 5% — на проникающую радиацию и электромагнитный импульс и до 15% — на радиоактивное заражение.
Для нейтронного взрыва характерны те же поражающие факторы, однако несколько по-иному распределяется энергия взрыва: 8— 10% — на образование ударной волны, 5—8% — на световое излучение и около 85% расходуется на образование нейтронного и гамма-излучений (проникающей радиации).
Чрезвычайные ситуации на радиационно опасных объектах
Ядерный топливный цикл (ЯТЦ) можно разбить на этапы;
—добыча урановой руды и извлечение из нее (обогащение)
урана;
—использование ядерного горючего в реакторах;
—транспортировка РВ;
—химическая регенерация отработанного ядерного топлива;
—очистка отработанного ядерного топлива от радиоактивных
(РА) отходов;
—безопасное («вечное») хранение РА отходов и примесей;
—изъятие из отработанного ядерного топлива урана и плутония для использования в ядерной энергетике.
Результатом добычи и дробления урановой руды, обогащения урана являются горы выработки, которые:
— создают опасную экологическую ситуацию;
--- выводят из оборота значительные земельные площади;
—изменяют гидрологию территории;
—приводят к длительному РЗ почвы, атмосферы и воды.
Малое содержание урана-235 в добываемой руде (0,7%) не позволяет использовать ее в ядерной энергетике: требуются обогащение этой руды, то есть повышение содержания урана-235 с применением весьма сложного и дорогостоящего оборудования, и значительные энергетические затраты. Обогащение возможно после разделения изотопов урана-233, урана-235, урана-238 на атомном уровне.
Природный уран поставляется на рынок в виде закиси урана (спрессованный порошок желто-бурого цвета), а обогащенный уран — в виде таблеток окиси урана или газообразного шестифто-ристого урана (в стальных баллонах).
В местах добычи урана основную массу в отвалах составляют горы мелкого песка, смешанного с природными радионуклидами, которые в основном выделяют РА газ радон-222 (дающий а-нзлучение, что увеличивает вероятность возникновения рака легких К 1982 г. в США такого песка накопилось около 175 млн т с излучением! ниже ПДД. К настоящему времени снесены тысячи домов, школ и других строений, выполненных из этих материалов.
Общие запасы урана на Земле составляют около 15 млн т. Разрабатываются месторождения с запасами до 2,7 млн т. На долю бывшего СССР приходилось до 45% мирового уранового запаса, распределенного почти равномерно между Россией, Узбекистаном и Казахстаном.
Радиационно опасный объект (РАОО) — это ОЭ, где в результате аварии могут произойти массовые радиационные выбросы или поражение живых организмов и растений. Виды РАОО:
АЭС — это ОЭ по производству электроэнергии с использованием ядерного реактора, оборудования и подготовленного персонала (рис. 5.1);
ACT (атомная станция теплоснабжения) — это ОЭ по производству тепловой энергии с использованием реактора, оборудования и подготовленного персонала;
ПЯТЦ (предприятие ядерного топливного цикла) — это ОЭ для изготовления ядерного топлива, его переработки, перевозки и захоронения отходов.
При ядерной реакции до 99% ядерного топлива идет в РА отходы (плутоний, стронций, цезий, кобальт), которые нельзя уничтожить поэтому надо хранить. Контакты с ядерным горючим, его отходами, энергоносителями, тепловыделяющими элементами (ТВЭЛ) и другими Ра продуктами приводят к РЗздании, оборудования, транспорта Если специальная обработка не снизит их уровень заражения ниже ПДД (ПДУ), то они также требуют захоронения.
Ядерный реактор является основной частью АЭС и ядерных двигателей Он представляет собой большой котел для нагрева теплоносителя (воды, газа). Источник тепла — управляемая ядерная реакция Необходимо иметь в виду, что 0,5 г ядерного топлива по производств энергии эквивалентно 15 вагонам угля, который к тому же при сгорании выбрасывает в атмосферу огромное количество канцерогенных веществ.
Обогащенное ядерное топливо размешается в активной зоне реактора в виде правильной решетки из связок тепловыделяющих элементов (примерно 700 шт.). ТВЭЛ — это стержень диаметром 10 мм, длиной 4 м, с оболочкой из циркония, постоянно омываемый водой. Вода выполняет роль охладителя и поглотителя нейтронов (если используется «тяжелая вода», то она только замедляет нейтроны, но не поглощает их, то есть в этом случае можно использовать природный уран. Такой тип реактора использует лишь 1% выделенной энергии).
Существуют ядерные реакторы на медленных и быстрых нейтронах. Реакторы на медленных нейтронах могут охлаждаться обычной водой, как, например, РБМК — реактор большой мощности, канальный; ВВЭР — водо-водяной реактор, либо «тяжелой» водой или газом, как, например, ВТГР — высокотемпературный с гелиевым охлаждением реактор. Реакторы на быстрых нейтронах называются реакторами-размножителями (Р-Р). Если ВВЭР использует 5% ядерного топлива, то реактор на быстрых нейтронах, например БН-600, — до 55%.
Работой реактора, то есть движением стержней в активной зоне относительно вещества, поглощающего нейтроны, управляет оператор или автоматическая система.
![]() |
Реактор (рис. 5.2) имеет два контура движения воды. В первом контуре (где обеспечивается давление 7 кПа) вода остается в жидком состоянии даже при температуре 330°С и, проходя через теплообменник (парогенератор), отдает тепло воде второго контура. Первый и второй контуры реактора надежно изолированы друг от друга. Во втором контуре реактора вода находится в парообразном состоянии, поскольку давление здесь атмосферное. Этот пар вращает турбогенератор, который вырабатывает электроэнергию.
В реакторе с гелиевым охлаждением (ВТГР) для замедления нейтронов используют графитовые блоки, а в качестве теплоносителя — углекислый газ или гелий при температуре 670°С (эти газы не допускают коррозии металла). Тепло через теплообменник передается во второй контур, где температура пара достигает 540°С.
Для аварийной остановки реактора его активная зона может быть без вмешательства оператора залита водой с поглотителем нейтронов (бор, либо отличное от воды водородосодержащее вещество) из специального водоема. Такая вода в обычном режиме не смешивается с рабочим теплоносителем, а «глушит» реактор только при резком развитии аварии. (В обычном режиме трубы с водой погружены на определенную глубину. С появлением в них пара трубы всплывают, что увеличивает производительность насосов. Если насосы не способны справиться с глушением, то активная зона реактора заливается составом из аварийного спецводоема: происходит «глушение» реактора.) Вероятность нанесения ущерба здоровью персонала АЭС в год составляет 5Х10"6 от рака и 10"6 от лучевой болезни.
Для обеспечения защиты на АЭС имеется соответствующая охрана, механические препятствия, электронная охранная сигнализация, электрическое самообеспечение. Чтобы не отстать от мирового сообщества, Россия должна развивать свою атомную энергетику.
Для получения управляемой термоядерной реакции ученые пошли несколькими путями. Один из них привел к созданию токамака, другой — к схеме реактора с «открытой» ловушкой. В 1968г токамак потряс мир многообещающими результатами, и основные средства стали вкладывать именно в это направление. Но сторон