Режим работы установок
Фотографии установок гидрокрекинга
Рис.16. Установка гидрокрекинга T-Star мощностью 3,5 млн. тонн на НПЗ "ЛУКОЙЛ-ПНОС". | Рис.17. Установка гидрокрекинга на НПЗ компании YPF-Repsol. Реакторный блок - в центре. |
Перед каталитическим риформингом сырье подвергают гидроочистке
рециркулирующим водородсодержащим газом. После гидроочистки продукты
поступают в отпарную колонну 3. С верха ее выводятся сероводород и водяные
пары, а с низа — гидрогенизат. Гидрогенизат вместе с рециркулирующим
водородсодержащим газом нагревается в змеевиках печи 5 и поступает в
реакторы 6 каталитического риформинга. Продукты, выходящие из зоны реакции,
охлаждаются и разделяются в сепараторе 2 на газовую и жидкую фазы. Жидкие
продукты фракционируют с целью получения компонента автомобильного бензина
с заданным давлением насыщенных паров или других продуктов (например,
сжиженного нефтяного газа, ароматических углеводородов и т. д.). Богатый
водородом газ направляют на рециркуляцию, а избыток его выводят из системы
и используют в других процессах.
Рассмотрим влияние давления, температуры и других факторов на результаты
каталитического риформинга.
Давление. Высокое давление способствует более_длительной работе
катализатора; частично это происходит вследствие того, что закоксовывание
катализатора (в особенности платины) и чувствительность его к отравлению
сернистыми и другими ядами значительно уменьшаются с повышением давления.
Повышение давления увеличивает скорость реакций гидрокрекинга и
деалкилирования, при этом равновесие сдвигается в сторону образования
парафинов. Снижение рабочего, а следовательно, и парциального давления
водорода способствует увеличению степени ароматизации парафиновых и
нафтеновых углеводородов.
Температура. Применительно к каталитическому риформингу повышение
температуры способствует образованию ароматических углеводородов и
препятствует протеканию обратной реакции, а также превращению некоторых
изомеров нафтеновых углеводородов в парафиновые, которые легче подвергаются
гидрокрекингу, С повышением температуры в процессе каталитического
риформинга уменьшается выход стабильного бензина и снижается концентрация
водорода в циркулирующем газе. Это объясняется тем, что при более высоких
температурах увеличивается роль гидрокрекинга. С увеличением температуры
возрастает выход более легких углеводородов — пропана, н-бутана и изобутана
(очевидно, это происходит за счет усиления реакций гидрокрекинга
углеводородов, как содержащихся в сырье, так и вновь образующихся в
процессе каталитического риформинга). Увеличивается также содержание
ароматических углеводородов в бензине и возрастает его октановое число. В
результате увеличивается образование водорода и давление насыщенных паров
бензина, возрастает и содержание в нем фракций, выкипающих до 100 °С.
Объемная скорость. Объемную скорость можно повысить, увеличив расход
свежего сырья или уменьшив загрузку катализатора в реакторы. В результате
уменьшается время контакта реагирующих и промежуточных продуктов с
катализатором. С повышением объемной скорости увеличивается выход
стабильного продукта и содержание водорода в циркулирующем газе, снижается
выход водорода и легких углеводородов и, что особенно важно, уменьшается
выход ароматических углеводородов. Таким образом, с повышением объемной
скорости ресурсы ароматических, углеводородов при каталитическом риформинге
снижаются, а выход бензина, хотя и увеличивается, но октановое число его
становится меньше; давление насыщенных паров бензина и содержание в нем
ароматических углеводородов и фракций, выкипающих до 100 °С, также
уменьшаются.
С увеличением объемной скорости преобладающую роль в процессе начинают
играть реакции, протекающие быстрее: дегидрирование нафтеновых
углеводородов, гидрокрекинг тяжелых парафиновых углеводородов и
изомеризация углеводородов С4 и С5. Что же касается реакций, требующих
большого времени (дегидроциклизации, деалкилирования и гидрокрекинга легких
углеводородов), их роль снижается.
Соотношение циркулирующий водородсодержащий газ: сырье можно регулировать
в широких пределах. Нижний предел определяется минимально допустимым
количеством газа, подаваемого для поддержания заданного парциального
давления водорода, а верхний — мощностью газокомпрессорного оборудования.
Увеличение соотношения водородсодержащий газ: сырье проявляется в двух
противоположных направлениях. Повышение парциального давления водорода
подавляет реакции дегидрирования, но, с другой стороны, увеличение
количества газа, циркулирующего через реактор, уменьшает падение в них
температуры, в результате чего средняя температура катализатора повышается,
и скорость протекающих реакций увеличивается. Влияние второго фактора —
повышения температуры катализатора — преобладает. Для поддержания
постоянного октанового числа риформинг-бензина, вероятно, необходимо
снизить температуру на входе в реактор.
Жесткость процесса. В последнее время в теории и практике каталитического
риформинга стали пользоваться понятием «жесткость». Жестким называют режим,
обеспечивающий получение бензина с определенными свойствами (с определенным
октановым числом, причем более высокому числу соответствует более жесткий
режим каталитического риформинга).
В зависимости от жесткости риформинга октановое число бензина можно
довести до 93—102 по исследовательскому методу без ТЭС. Чем выше октановое
число, тем больше содержится в бензине ароматических углеводородов. В
зависимости от исходного сырья это достигается за счет не только повышения
температуры, но и путем изменения давления. Обычно в сырье много
парафиновых углеводородов и получение бензинов с повышенными октановыми
числами обусловлено повышением температуры и высокого давления. При
риформинге высококачественного (с относительно большим содержанием
нафтеновых углеводородов), но сравнительно редко встречающегося сырья тот
же результат достигается при давлении около 25 ат и при несколько более
высокой температуре.
Наибольшее практическое значение приобрели процессы каталитического
риформинга на катализаторах, содержащих платину. Такие процессы
осуществляются в среде водородсодержащего газа (70—90 объемн.% водорода)
при следующих условиях: 470—530 °С, 10—40 ат, объемная скорость 1—Зч-1,
соотношение циркулирующий водородсодержащий газ : сырье = 600—1800м3/м3.
3.Химические основы процесса. В начале 20 в. Н. Д. Белинский показал,
что на платиновом и палладиевых катализаторах можно без побочных реакций
проводить каталитическую дегидрогенизацию (дегидрирование) шестичленных
нафтеновых углеводородов с образованием ароматических углеводородов.
Дегидрогенизацию нафтеновых углеводородов при воздействии окислов металлов
наблюдали в 1911 г. В. Н. Ипатьев с Н. Довлевичем и в 1932 г. В. Лозье и
Дж. Воген.
В 1936 г. одновременно в трех лабораториях Советского Союза была открыта
реакция дегидроциклизации парафиновых углеводородов в ароматические. Б. Л.
Молдавский и Г. Д. Камушер осуществили эту реакцию при 450—470 °С на окиси
хрома, В. И. Каржев, М. Г. Северьянов и А. Н. Снова— при 500— 550 °С на
медь-хромовом катализаторе, Б. А. Казанский и А. Ф. Платэ осуществили
дегидроциклизацию парафиновых углеводородов с применением платины на
активированном угле при 304—310 °С. В дальнейших работах Б. А. Казанского с
сотр. была показана возможность дегидроциклизации н-гексана в бензол с
применением алюмохромокалиевого катализатора. Указанные исследования,
положившие научные основы процесса каталитического риформинга, позволили
разработать и осуществить ряд периодических и непрерывных процессов
каталитического риформинга.
Ниже рассмотрены основные реакции, протекающие при каталитическом
риформинге.
Дегидрирование нафтенов с образованием ароматических углеводородов можно
показать на следующем примере:
Реакция дегидрирования нафтенов играет весьма важную роль в повышении
октанового числа бензина за счет образования ароматических углеводородов.
Из нафтеновых углеводородов наиболее полно и быстро протекает
дегидрирование шестичленных циклов.
Исходные нафтеновые углеводороды, содержащиеся в бензине, имеют октановые
числа 65—80 пунктов по исследовательскому методу. При высоком содержании
нафтеновых углеводородов в сырье резко увеличивается выход ароматических
углеводородов, например выход бензола — на 30—40%. Увеличение октанового
числа бензина во многом зависит от содержания в нем непревращенных
парафиновых углеводородов, так как именно они значительно снижают октановое
число. Вот почему дегидрирование нафтеновых углеводородов должно
сопровождаться одновременным протеканием других реакций — только в этом
случае можно достигнуть высокой эффективности каталитического риформинга.
При процессах каталитического риформинга протекают также реакции
дегидрирования парафиновых углеводородов до олефинов, но это мало повышает
октановое число бензина и снижает его стабильность при хранении. Реакция
дополнительно усложняется тем, что разрыв связей углерод — углерод
протекает в большей степени, чем разрыв связей углерод — водород. Кроме
того, при температурах, необходимых для протекания дегидрирования
парафинов, одновременно идет и циклизация этих углеводородов. Поэтому при
дегидрировании парафиновых углеводородов часто вначале образуются
нафтеновые (циклические) углеводороды, которые потом превращаются в
ароматические.
Иногда эти две стадии объединяют вместе, и тогда реакция носит название
дегидроциклизации. Следует отметить, что дегидрирование парафинов (с
образованием олефинов) протекает при более высокой температуре, чем
дегидроциклизация.
В результате гидрокрекинга высокомолекулярных парафинов образуются два
или несколько углеводородов с более низким молекулярным весом.
Поэтому иногда реакцию называют деструктивным гидрированием. Реакция
гидрокрекинга высокомолекулярных углеводородов с образованием углеводородов
меньшего молекулярного веса (наряду с гидрированием и дегидроциклизацией)
может играть важную роль в повышении октанового числа бензина риформинга.
Реакции гидрокрекинга, вероятно, протекают за счет передачи гидрид-ного
иона катализатору с образованием карбоний-иона, последующее расщепление
которого дает олефиновый углеводород и новый карбоний-ион. Положительное
значение гидрокрекинга заключается в образовании низкокипящих жидких
углеводородов с более высоким октановым числом и меньшей плотностью, чем
исходное сырье.
Катализатор оказывает большое влияние на реакцию гидрокрекинга. Характер
реакции можно изменять соответствующим выбором катализатора. В качестве
примера можно отметить, что при гидрировании парафиновых углеводородов
нормального строения в присутствии никеля на алюмосиликате протекает не
только гидрокрекинг, но и изомеризация. Если водород заменить азотом, то
изомеризация не протекает.
Изомеризация н-парафинов, протекающая при риформинге, приводит к
образованию разветвленных углеводородов.Следует отметить, что пентановые и гексановые фракции прямогонного
бензина и без риформинга имеют сравнительно высокое октановое число.
Изомеризация нормальных парафинов С7—С10 теоретически должна дать
значительное повышение октановых чисел, но практически в существующих
условиях каталитического риформинга эта реакция не протекает. Вместо нее
указанные углеводороды вступают в реакции гидрирования и гидрокрекинга.
Поэтому реакция изомеризации играет при процессах каталитического
риформинга лишь подсобную роль. Например, ароматизация замещенных
пятичленных нафтенов основывается, как указывалось выше, на способности
катализатора изомеризовать эти нафтены в шестичленные, которые наиболее
легко дегидрируются до ароматических углеводородов.
Дегидроциклизация парафинов с образованием ароматических углеводородов является одной из важнейших реакций каталитического риформинга.
Каталитическая дегидроциклизация парафинов протекает с предпочтительным
образованием гомологов бензола с максимальным числом метильных заместителей
в ядре, которое допускается строением исходного углеводорода. При
увеличении молекулярного веса парафиновых углеводородов реакция
дегидроциклизации облегчается .
Каталитическая дегидроциклизация парафиновых углеводородов осуществляется
в присутствии эффективного катализатора. В настоящее время изучено большое
количество катализаторов. Наибольшее применение имеют окиси хрома и
молибдена на носителях в присутствии добавок (платина, палладий, церий и
кобальт). Установлено, что дегидроциклизация на алюмохромовом катализаторе
в значительной степени подвержена влиянию давления: при низких давлениях
степень превращения сырья повышается. В противоположность этому, на
алюмомолибденовых катализаторах степени превращения при высоких и низких
давлениях примерно одинаковы.