Физико-химические свойства циркония

Введение.

Цирконий в виде двуокиси впервые был выделен в 1789 году немецким химиком М. Г. Клапротом в результате анализа минерала циркона. Происхождение самого слова циркон неясно. Возможно, оно происходит от арабского zarkun (киноварь) или от персидского zargun (золотистый цвет).

Цирконий — литофильный элемент. В природе известны его соединения исключительно с кислородом в виде окислов и силикатов. Несмотря на то, что цирконий рассеянный элемент, насчитывается около 40 минералов, в которых цирконий присутствует в виде окислов или солей. В природе распространены главным образом циркон (ZrSiO4)(67,1% ZrO2), бадделеит (ZrO2) и различные сложные минералы (эвдиалит (Na, Ca)5(Zr, Fe, Mn)[O,OH,Cl][Si6O17] и др.). Во всех земных месторождениях цирконию сопутствует Hf, который входит в минералы циркона благодаря изоморфному замещению атома Zr.

Циркон является самым распространенным циркониевым минералом. Он встречается во всех типах пород, но главным образом в гранитах и сиенитах. В графстве Гиндерсон (штат Северная Каролина) в пегматитах были найдены кристаллы циркона длиной в несколько сантиметров, а на Мадагаскаре были обнаружены кристаллы, вес которых исчисляется килограммами.

Бадделеит был найден Юссаком в 1892 г в Бразилии. Основное месторождение находится в районе Посус-ди-Калдас (Бразилия). Там была найдена глыба бадделеита весом около 30 т, а в водных потоках и вдоль обрыва бадделеит встречается в виде аллювиальной гальки диаметром до 7,5 мм, известной под названием фавас (от португальского fava — боб). Фавас обычно содержит свыше 90 % двуокиси циркония.

Наиболее крупные месторождения циркония расположены на территории США, Австралии, Бразилии, Индии.

В России, на долю которой приходится 10% мировых запасов циркония (3 место в мире после Австралии и ЮАР), основными месторождениями являются: Ковдорское коренное бадделит-апатит-магнетитовое в Мурманской области, Туганское россыпное циркон-рутил-ильменитовое в Томской области, Центральное россыпное циркон-рутил-ильменитовое в Тамбовской области, Лукояновское россыпное циркон-рутил-ильменитовое в Нижегородской области, Катугинское коренное циркон-пирохлор-криолитовое в Читинской области и Улуг-Танзекское коренное циркон-пирохлор-колумбитовое.

Целью курсовой работы является рассмотрение производства двуокиси циркония разложением циркона спеканием с карбонатом кальция.

Физико-химические свойства циркония.

Цирконий — блестящий серебристо-серый металл. Существует в двух кристаллических модификациях: α-Zr - с гексагональной решёткой, β-Zr - с кубической объёмноцентрированной решёткой.

Плотность α-циркония при 20 °C равна 6,5107 г/см³; температура плавления Tпл — 1855 °C; температура кипения Tкип - 4409 °C; удельная теплоёмкость (25-100 °C) 0,291 кДж/(кг·К), коэффициент теплопроводности (50 °C) 20,96 вт/(м·К); температурный коэффициент линейного расширения (20-400 °C) 6,9×10−6; удельное электрическое сопротивление циркония высокой степени чистоты (20 °C) 44,1 мкОм·см, температура перехода в состояние сверхпроводимости 0,7 К.

Цирконий парамагнитен; удельная магнитная восприимчивость увеличивается при нагревании и при −73 °C равна 1,28×10−6, а при 327 °C — 1,41×10−6. Сечение захвата тепловых нейтронов 0,18 ×10−28 м², примесь гафния увеличивает это значение. Чистый цирконий пластичен, легко поддаётся холодной и горячей обработке (прокатке, ковке, штамповке). Наличие растворённых в металле малых количеств кислорода, азота, водорода и углерода (или соединений этих элементов с цирконием) вызывает хрупкость циркония. Модуль упругости (20 °C) 97 Гн/м² (9700 кгс/мм²); предел прочности при растяжении 253 Мн/м² (25,3 кгс/мм²); твёрдость по Бринеллю 640—670 Мн/м² (64-67 кгс/мм²); на твёрдость очень сильное влияние оказывает содержание кислорода: при концентрации более 0,2 % цирконий не поддаётся холодной обработке давлением.

Внешняя электронная конфигурация атома циркония 4d25s2. Для циркония характерна степень окисления +4. Более низкие степени окисления +2 и +3 известны для циркония только в его соединениях с хлором, бромом и иодом.

Компактный цирконий медленно начинает окисляться в пределах 200—400 °C, покрываясь плёнкой циркония двуокиси ZrO2; выше 800 °C энергично взаимодействует с кислородом воздуха. Порошкообразный металл пирофорен — может воспламеняться на воздухе при обычной температуре. Цирконий активно поглощает водород уже при 300 °C, образуя твёрдый раствор и гидриды ZrH и ZrH2; при 1200—1300 °C в вакууме гидриды диссоциируют и весь водород может быть удалён из металла. С азотом цирконий образует при 700—800 °C нитрид ZrN. Цирконий взаимодействует с углеродом при температуре выше 900 °C с образованием карбида ZrC. Карбид и нитрид циркония — твёрдые тугоплавкие соединения; карбид циркония — полупродукт для получения хлорида ZrCl4. Цирконий вступает в реакцию со фтором при обычной температуре, а с хлором, бромом и иодом при температуре выше 200 °C, образуя высшие галогениды ZrHal4 (где Hal — галоген). Цирконий устойчив в воде и водяных парах до 300 °C, не реагирует с соляной и серной (до 50 %) кислотами, а также с растворами щелочей (цирконий — единственный металл, стойкий в щелочах, содержащих аммиак). С азотной кислотой и царской водкой он взаимодействует при температуре выше 100 °C. Растворяется в плавиковой и горячей концентрированной (выше 50 %) серной кислотах. Из кислых растворов могут быть выделены соли соответствующих кислот разного состава, зависящего от концентрации кислоты. Так, из концентрированных сернокислых растворов циркония осаждается кристаллогидрат Zr(SO4)2•4H2O; из разбавленных растворов — основные сульфаты общей формулы xZrO2 • ySO3 • zH2O (где х : y > 1). Сульфаты циркония при 800—900 °C полностью разлагаются с образованием двуокиси циркония. Из азотнокислых растворов кристаллизуется Zr(NO3)4•5H2O или
ZrO(NO3)2 • xH2O (где х = 2-6), из солянокислых растворов — ZrOCl2 • 8H2O, который обезвоживается при 180—200 °C.

Наши рекомендации