Другие виды производственных функций

Другим видом производственной функции является линейная производственная функция, которая имеет следующий вид:

Q(L,K) = aL + bK

Данная производственная функция является однородной первой степени, следовательно, она имеет постоянную отдачу от масштабов производства. Графически данная функция представлена на рисунке 1.2, а.

Экономический смысл линейной производственной функции состоит в том, что она описывает такое производство, в котором факторы являются взаимозаменяемыми, то есть, не имеет значения – использовать только труд или только капитал. Но в реальной жизни такая ситуация практически не возможна, так как любая машина все равно обслуживается человеком.

Коэффициенты a и b функции, которые находятся при переменных L и Kпоказывают пропорции, в которых один фактор может быть замещён другим. Например, если a=b=1, то это значит, что 1 час труда может быть заменен 1 часом машинного времени для того, чтобы произвести такой же объём продукции.

Необходимо отметить, что в некоторых видах хозяйственной деятельности труд и капитал вообще не могут заменить друг друга и должны использоваться в фиксированной пропорции: 1 рабочий - 2 станка, 1 автобус - 1 водитель. В этом случае эластичность замещения факторов равна нулю, а технология производства отображается производственной функцией Леонтьева:

Другие виды производственных функций - student2.ru Другие виды производственных функций - student2.ru Q(L,K) = min{; },

Величина Значение
Q Объём производства продукции
a,b Технологически необходимый расход факторов производства на единицу продукции
min{x;y} Минимальное значение между переменными x и y

Если, например, на каждом автобусе дальнего следования должно быть два водителя, то при наличии в автобусном парке 50 автобусов и 90 водителей одновременно могут обслуживаться только 45 маршрутов:
min{90/2;50/1} = 45.

Приложение

Примеры решения задач с использованием производственных функций

Задача 1

Фирма, занимающаяся речными перевозками, использует труд перевозчиков (L) и паромы (K). Производственная функция имеет вид Другие виды производственных функций - student2.ru . Цена единицы капитала равна 20, цена единицы труда равна 20. Каков будет наклон изокосты? Какое количество труда и капитала должна привлечь фирма для осуществления 100 перевозок?

Решение

Изокоста задается уравнением:

Другие виды производственных функций - student2.ru ,

где C - величина общих издержек (некоторая константа). Отсюда:

Другие виды производственных функций - student2.ru ,

т.е. наклон этой прямой равен -1 .

Оптимальное количество труда и капитала для 100 перевозок определяется как точка касания изокванты Другие виды производственных функций - student2.ru и изокосты Другие виды производственных функций - student2.ru при некотором C . Решая уравнение изокванты получаем:

√(L×K) = 100/10 = 10, тогда Другие виды производственных функций - student2.ru .

Тогда Другие виды производственных функций - student2.ru . Так как общие издержки при этом должны быть минимальны, то, минимизируя C по L , найдем количество труда L: Другие виды производственных функций - student2.ru и Другие виды производственных функций - student2.ru . Количество капитала найдем по формуле Другие виды производственных функций - student2.ru .

Ответ: Для осуществления 100 перевозок фирма должна привлечь 10 единиц труда и 10 единиц капитала.

Задача 2

Производственная функция имеет вид Другие виды производственных функций - student2.ru , где Y - количество продукции за день,L - часы труда, K - часы работы машин. Предположим, что в день затрачивается 9 часов труда и 9 часов работы машин.

Каково максимальное количество продукции, произведенной за день? Предположим, что фирма удвоила затраты обоих факторов. Определите эффект масштаба производства.

Решение

В условиях задачи в день производится Другие виды производственных функций - student2.ru единиц продукции. Если затраты обоих факторов удваиваются, то выпуск становится равным Другие виды производственных функций - student2.ru , т.е. тоже удваивается. Тогда Другие виды производственных функций - student2.ru и эффект Другие виды производственных функций - student2.ru от изменения масштаба производства, определяемый из условия Другие виды производственных функций - student2.ru , равен единице.

Задача 3

В краткосрочном периоде производственная функция фирмы имеет вид: Другие виды производственных функций - student2.ru , где L - число рабочих. При каком уровне занятости общий выпуск будет максимальным?

Решение

Чтобы ответить на вопрос задачи, нужно найти точку максимума функции Y(L) . Продифференцируем ее по L и приравняем производную к нулю: Другие виды производственных функций - student2.ru . Получаем квадратное уравнение, дискриминант которого Другие виды производственных функций - student2.ru , а корни Другие виды производственных функций - student2.ru . Поскольку один из корней отрицательный, берем Другие виды производственных функций - student2.ru . Количество рабочих - целое число, поэтому, округляя, получаем Другие виды производственных функций - student2.ru .

Заключение

Ресурсы в экономике выступают в качестве факторов производства, к которым относятся:

1. труд;

2. земля (природные ресурсы);

3. капитал;

4. предпринимательская способность;

5. научно-технический прогресс.

Все эти факторы тесно взаимосвязаны между собой.

Производственная функция – это математическая зависимость между максимальным объемом выпуска продукции в единицу времени и комбинацией факторов, его создающих, при имеющемся уровне знаний и технологий. При этом главная задача математической экономики с практической точки зрения состоит в выявлении этой зависимости, то есть, в построении производственной функции для конкретной отрасли или конкретного предприятия.

В теории производства в основном используют двухфакторную производственную функцию, которая в общем виде выглядит так:

Q = f ( K , L ), где Q - объем производства; К - капитал; L – труд.

Вопрос соотношения затрат замещающих друг друга факторов производства решается при помощи такого понятия, как эластичность замещения факторов производства.

Эластичность замещения – это соотношение затрат замещающих друг друга факторов производства при неизменном объёме выпуска продукции. Это своего рода коэффициент, который показывает степень эффективности замещения одного фактора производства другим.

Мерой взаимозаменяемости факторов производства служит предельная норма технического замещения MRTS, которая показывает, на сколько единиц можно уменьшить один из факторов при увеличении другого фактора на единицу, сохраняя выпуск неизменным.

Изокванта - кривая, представляющая собой всевозможные сочетания двух издержек, обеспечивающих заданный постоянный объем производства.

Денежные средства как правило ограничены. Линия, образуемая множеством точек, показывающих какое количество сочетающихся факторов производства или ресурсов можно приобрести при имеющихся денежных средствах, называется изокостой. Таким образом, оптимальным сочетанием факторов для конкретного предприятия является общее решение уравнений изокосты и изокванты. Графически – это точка касания линий изокосты и изокванты.

Производственная функция может быть записана в самых различных алгебраических формах. Как правило, экономисты работают с линейно однородными производственными функциями.

В работе также были рассмотрены конкретные примеры решения задач с применением производственных функций, которые позволили сделать вывод о их большой практической значимости в экономической деятельности любого предприятия.

Список используемой литературы

1. Доугерти К. Введение в эконометрику. – М.: Финансы и статистика, 2001.

2. Замков О.О., Толстопятенко А.В., Черемных Ю.П. Математические методы в экономике: Учебник. – М.: Изд. «ДИС», 1997.

3. Курс экономической теории: учебник. – Киров: «АСА», 1999.

4. Микроэкономика. Под ред. Проф. Яковлевой Е.Б. – М.: СПб. Поиск, 2002.

5. Салманов О. Математическая экономика. – М.: BHV, 2003.

6. Чураков Е.П. Математические методы обработки экспериментальных данных в экономике. – М.: Финансы и статистика, 2004.

7. Шелобаев С.И. Математические методы и модели в экономике, финансах, бизнесе. – М.: Юнити-Дана, 2000.

1 Большой коммерческий словарь./Под редакцией Рябовой Т.Ф. – М.: Война и мир, 1996. С. 241.

Наши рекомендации