Основные приемы построения и выполнения группировок.

Если для построения группировки используется только один признак, то такую группировку называют простой, если группировка проводится по нескольким признакам, ее называют сложной. Сложная группировка бывает или комбинационная, или многомерная.

Комбинационная группировка выполняется последовательно: группы, выделенные по одному признаку, затем выделяются в подгруппы по другому признаку, которые, в свою очередь, могут выделяться по следующему другому признаку. В этом случае число групп будет равно произведению числа выделенных групп на число группировочных признаков. Процедура определения оптимального числа групп основана на применении формулы Стерджесса:

Основные приемы построения и выполнения группировок. - student2.ru

где n - число групп; N - число единиц совокупности.

Из формулы видно, что выбор числа групп зависит от объема совокупности. Если групп оказывается много и они включают малое число единиц, то групповые показатели могут стать ненадежными. Поэтому альтернативой комбинационной группировке является многомерная группировка, которая осуществляется по комплексу признаков одновременно. Ее применение требует использования электронной вычислительной техники. С помощью специально разработанных электронных программ формируются однородные группы на основании близости по всему комплексу признаков.

Определение числа групп тесно связано с понятием величина интервала: чем больше число групп, тем меньше величина интервала, и наоборот. Интервал – разница между максимальным и минимальным значениями признака в каждой группе. Он определяет количественные границы групп, что для статистической практики имеет большое значение, особенно когда нужно образовать качественно однородные группы. Например, исследуется совокупность предприятий по выполнению коллективных договоров. Здесь нельзя объединять предприятия, которые не выполнили обязательства, и те, которые их перевыполнили. Показатель здесь – величина интервала.

Другим примером является невозможность образовывать группу 95 – 105%, поскольку это разные части совокупности. Следует образовать две группы: 95 – 100% и 101 – 105%. В этом случае границы, по которым различаются совокупности, абсолютно соблюдаются.

Каждый интервал имеет нижнюю (наименьшее значение признака) и верхнюю (наибольшее значение признака) границы или одну из них. Поэтому величина интервала есть разность между верхней и нижней границами интервала. Если у интервала указана лишь одна граница (у первого – верхняя, у последнего – нижняя), то речь идет об открытых интервалах. Если у интервала имеются и нижняя, и верхняя границы, то речь идет о закрытых интервалах. Закрытые интервалы подразделяются на равные и неравные (прогрессивно возрастающие, прогрессивно убывающие), а также специализированные и произвольные.

Группировку с равными интервалами строят тогда, когда исследуются количественные различия в величине признака внутри групп одинакового качества, а также если распределение носит более или менее равномерный характер. Если можно заранее установить определенное количество групп, то величину равного интервала можно вычислить по формуле

Основные приемы построения и выполнения группировок. - student2.ru

где i – величина равного интервала; xmax ,xmin – наибольшее и наименьшее значения признака; n – число групп.

Если не требуется предварительного установления числа групп, то используется другой способ определения величины равного интервала - по формуле Стерджесса

Основные приемы построения и выполнения группировок. - student2.ru

где n - число наблюдений.

Если величина равного интервала рассчитывается по данной формуле, то следует знаменатель предварительно округлить до целого числа (как правило, всегда большего), так как количество групп не может быть дробным числом.

В статистической практике чаще применяются неравные интервалы (постепенно возрастающие или постепенно убывающие). При этом исследуемая совокупность делится на группы примерно равного заполнения с большим числом единиц. Неравные интервалы могут использоваться, например, в таких случаях:

а) при исследовании группировки с применением нескольких признаков, дающих возможность составить несколько подгрупп, где требуются уже и более длинные и более короткие интервалы;

б) при образовании крупных групп с новым качеством на базе мелких групп при условии сохранения их однородности, что приводит к увеличению интервалов.

В статистической практике используются также специализированные интервалы. Интервалы называют специализированными, если речь идет об установлении границ интервала в группах, схожих по типу и по признаку, но имеющих отношение, скажем, к разным отраслям производства.

Заключение

Статистическая группировка – это процесс образования однородных групп на основе расчленения статистической совокупности на части или объединение изучаемых единиц в частной совокупности по существующим для них признакам.

Метод группировок является основой применения других методов статистического анализа основных сторон и характерных особенностей изучаемых явлений. По своей роли в процессе исследования метод группировок выполняет некоторые функции, аналогичные функциям эксперимента в естественных науках: посредством группировки по отдельным признакам и комбинации самих признаков статистика имеет возможность выявить закономерности и взаимосвязи явлений в условиях, в известной мере ею определяемых. При использовании метода группировок появляется возможность проследить взаимоотношение различных факторов и определить силу их влияния на результативные показатели.

Группировка является важнейшим этапом статистического исследования, соединяющим сбор первичной информации об объекте исследования и анализ этой информации на основе обобщающих статистических показателей.

Основные задачи, которые решаются с помощью группировок:

1) выделение социально экономических типов;

2) изучение структуры социально экономических явлений;

3) выявление связи между явлениями.

7. Абсолютные статистические показатели: определение, примеры.

Статистика, имея дело с массовыми явлениями и процессами, давая им количественную оценку, оперирует не просто числами, а статистическими показателями.

Под статистическим показателем понимается обобщающая количественная характеристика изучаемого объекта или его свойства.

Абсолютные показателихарактеризуют численность совокупности,либо объём изучаемого явления в конкретных границах пространства и времени, т. е. отражают уровень развития явления, его размер.

Абсолютный показатель можно получить одним из двух способов:

- путём подсчёта единиц совокупности, обладающих конкретным значением признака; например, число транспортных предприятий в Санкт- Петербурге на конкретную дату, численность промышленно-производственного персонала предприятия и т.д.

- путём суммирования значения признака по всей статистической совокупности; например, объём товарооборота предприятий торговли города в 2004г.

Абсолютные показатели всегда являются именованными числами.

В зависимости от социально-экономической сущности исследуемых явлений они выражаются в натуральных, стоимостных и трудовых единицахизмерения.

Натуральные измерителииспользуются в тех случаях, когда единицы измерения соответствуют потребительским свойствам изучаемых явлений, например: производство автомобилей измеряется в штуках, производство стали – в тоннах, урожайность – в центнерах и т.д.

Натуральные единицы измерения могут быть составными (сложными). Такие единицы применяются в тех случаях, когда для характеристики изучаемого явления одной единицы измерения недостаточно, и используется произведение двух единиц. Например, производство электроэнергии измеряется в киловатт-часах, грузооборот – в тонно-километрах и т. д.

В группу натуральных, включаются также условно- натуральные единицы измерения. Они используются, когда какой-либо продукт имеетнесколько разновидностей, и общий объем можно получить только исходя изобщего для всех разновидностей потребительского свойства. Например, вконсервной промышленности объёмы производства определяются в условныхконсервных банках объёмом 353,4 см3., в топливной – в условном топливе с теплотой сгорания 7000 ккал/кг (29,3 мДж/кг).

Чтобы получить обобщённые итоги, одна из разновидностей продукта принимается в качестве единого измерителя, а другие приводятся к нему с помощью соответствующих коэффициентов пересчёта. Например, если месторождение даёт за год 100 тыс. тонн нефти с теплотой сгорания 45,0 МДж/кг, то в условном топливе это будет эквивалентно 100×45,0/29,3=153,6 тыс. тонн условного топлива.

Стоимостные измерителипозволяют дать денежную оценку изучаемым явлениям и процессам. Эти измерители используются при обобщении данных, начиная с уровня предприятия и до уровня народного хозяйства, при оценке неоднородных статистических совокупностей. В стоимостных единицах измеряется объем выпущенной продукции предприятия, доходы населения и т. д.

Показатели, выраженные в стоимостных единицах, можно суммировать, получать по ним итоговые данные, но при их использовании необходимо учитывать изменение цен с течением времени.

Для устраненияуказанного недостатка стоимостных измерителей следует применять«неизменные» или «сопоставимые» цены одного итого же периода.

Трудовые единицы измеренияприменяются для оценки общих затрат труда и трудоемкости отдельных операции техпроцесса. К ним относятся человеко-часы, человеко-дни (оценка затрат рабочего времени), нормо-минуты (оценка трудоёмкости).

Сами по себе абсолютные показатели не дают полного представления об изучаемом явлении, не показывают его структуру, развитие во времени, соотношение между частями явления, на их основе сложно проводить сравнения с другими подобными явлениями. Перечисленные аналитические функции выполняют относительные показатели.

Изучая экономические явления, статистика не может ограничиваться исчислением только абсолютных величин. В анализе статистической информации важное место занимают производные обобщающие показатели – средние и относительные величины. Остановимся на характеристике относительных величин (относительных статистических показателей).

Анализ – это прежде всего сравнение, сопоставление статистических данных. В результате сравнения получают качественную оценку экономических явлений, которая выражается в виде относительных величин.

8. Относительные статистические показатели: определение, примеры.

Относительные статистические показатели (относительные статистические величины)в статистике представляют собой частное от деления двух статистических величин и характеризуют количественное соотношение между ними.

При расчете относительных величин следует иметь в виду, что в числителе всегда находится показатель, отражающий то явление, которое изучается, т. е. сравниваемый показатель, а в знаменателе – показатель, с которым производится сравнение, принимаемый за основание или базу сравнения. База сравнения выступает в качестве своеобразного измерителя. В зависимости от того, какое числовое значение имеет база сравнения (основание),результат отношения может быть выражен либо в форме коэффициента и процента, либо в форме промилле и децимилле. Существуют также именованные относительные величины. Например, показатель фондоотдачи в торговле получают делением объема товарооборота на среднегодовую стоимость основных фондов. Этот коэффициент показывает, сколько рублей товарооборота приходится на каждый рубль основных фондов.

Если значение основания или базы сравнения принимается за единицу (приравнивается к единице), то относительная величина (результат сравнения) является коэффициентом и показывает, во сколько раз изучаемая величина больше основания. Расчет относительных величин в виде коэффициента применяется в том случае, если сравниваемая величина существенно больше той, с которой она сравнивается. Если значение основания или базу сравнения принять за 100%, результат вычисления относительной величины будет выражаться также в процентах.

В тех случаях, когда базу сравнения принимают за 1000 (например, при исчислении демографических коэффициентов), результат сравнения выражается в промилле (%о). Относительные величины могут быть выражены и в децимилле, если основание отношения равно 10000.

Форма выражения относительных величин зависит от количественного соотношения сравниваемых величин, а также от смыслового содержания полученного результата сравнения. В тех случаях, когда сравниваемый показатель больше основания, относительная величина может быть выражена или коэффициентом, или в процентах. Когда сравниваемый показатель меньше основания, относительную величину лучше выразить в процентах; если же сравнительно малые по числовому значению величины сопоставляются с большими, относительные величины выражаются в промилле. Так, в промилле рассчитываются коэффициенты рождаемости, смертности, естественного и механического прироста населения.

В каждом отдельном случае следует выбирать ту форму выражения относительных величин, которая более наглядна и легче воспринимается. Например, лучше сказать, что объем товарооборота магазина за анализируемый период вырос почти в два раза, чем сказать, что объем товарооборота составил 199,5%.

Расчет относительных величин может быть правильным лишь при условии, что показатели, которые сравниваются, являются сопоставимыми. Причины, вызывающие несопоставимость показателей, неодинаковы, например различия в методологии сбора, обработки статистической информации, в длительности периодов времени, за которые исчислены сравниваемые показатели, и др. Во всех этих случаях расчет относительных величин можно выполнять только после приведения изучаемых показателей к сопоставимому виду.

По своему познавательному значению относительные величины подразделяются на следующие виды:

- относительный статистический показатель выполнения договорных обязательств;

- относительный статистический показатель планового задания;

- относительный статистический показатель структуры;

- относительный статистический показатель динамики;

- относительный статистический показатель сравнения;

- относительный статистический показатель координации;

- относительный статистический показатель интенсивности.

В связи с переходом экономики страны на рыночные отношения в статистической отчетности не будет содержаться плановых показателей. Поэтому в процессе анализа относительные величины выполнения плана рассчитываться не будут. Вместо них исчисляется относительный статистический показательвыполнения договорных обязательств – показатель, характеризующий уровень выполнения предприятием своих обязательств, предусмотренных в договорах.

Расчет этих показателей производится путем соотношения объема фактически выполненных обязательств (например, объема фактической поставки товара) и объема обязательств, предусмотренных в договоре (объем, поставки товаров по договору). Выражаются относительные величины выполнения договорных обязательств в форме коэффициентов или в процентах.

Относительная величина Фактический уровень

выполнения договорных = ------------------------------------------- * 100

обязательств, % Уровень, предусмотренный

договором

Относительный статистический показатель планового заданияхарактеризует степень напряженности плана на следующий период по сравнению с предыдущим и рассчитывается отношением планового показателя данного периода (планового) к фактически достигнутому результату предыдущего периода.

Относительные статистические показатели структурыхарактеризуют состав изучаемых совокупностей. Исчисляются они как отношение абсолютной величины каждого из элементов совокупности к абсолютной величине всей совокупности, т. е. как отношение части к целому, и представляют собой удельный вес части в целом. Как правило, относительные величины структуры выражаются в процентах (база сравнения принимается за 100).

Величина изучаемой части совокупности

Относительная величина = -------------------------------------------------- * 100

структуры, % Величина всей совокупности

Показатели структуры могут быть выражены также в долях (база сравнения принимается за единицу).

Сравнивая структуру одной и той же совокупности за разные периоды времени, можно проследить структурные изменения, происшедшие во времени.

Пример. Из общей численности населения России, равной на конец 1985 г. 143,8 млн. человек, 104,1 млн. составляло городские жители, 39,7 млн. - сельские. Рассчитав относительные величины структуры, можно определить удельные веса (или доли городских и сельских жителей) в общей численности населения страны, т. е. структуру населения по месту жительства:

Городское - (104,1 : 143,8)*100=72,4%;

Сельское - (39,7:143,8) *100=27,6%.

Спустя шесть лет, численность населения страны составила 148,7 млн., в том числе: городских жителей - 109,7 млн., сельских - 39,0 млн. Исходя из этих данных, исчисляются показатели структуры населения:

Городское - (109,7 : 148,7) * 100=73,8%;

Сельское - (39,0 : 148,7) * 100=26,2%.

Сравнив состав населения страны в 1985 г. и 1991 г., можно сделать вывод о том, что происходит увеличение удельного веса городских жителей.

Относительные величины структуры широко используются в анализе коммерческой деятельности торговли и сферы услуг. Они дают возможность изучить состав товарооборота по ассортименту, состав работников предприятия по различным признакам (полу, возрасту, стажу работы), состав издержек обращения и т. д.

Относительные статистические показатели динамикихарактеризуют изменение изучаемого явления во времени, выявляют направление развития, измеряют интенсивность развития. Расчет относительных величин выполняется в виде темпов роста и других показателей динамики.

Пример. Реализация хлопчатобумажных тканей секцией универмага составила в январе 3956 тыс. руб., в феврале - 4200 тыс. руб., в марте-4700 тыс. руб.

Темпы роста:

базисные (база - уровень реализации в январе)

Кф/я = 4200:3950 * 100 = 106,3%;

Км/я=4700:3950 * 100= 118,9%;

цепные

Кф/я = 4200:3950 *100 = 106,3%;

Км/ф=4700 : 4200* 100= 111,9%.

Относительные статистические показатели сравненияхарактеризуют количественное соотношение одноименных показателей, относящихся к различным объектам статистического наблюдения.

Пример. По данным Всесоюзной переписи населения 1989 г. численность населения Москвы составила 8967 тыс., а численность населения Ленинграда (ныне Санкт-Петербурга) -5020тыс. человек.

Рассчитаем относительную величину сравнения, приняв за базу сравнения численность жителей Санкт-Петербурга: 8967:5020=1,79. Следовательно, численность населения Москвы в 1,79 раза больше, чем Санкт-Петербурга.

Можно использовать относительные величины сравнения для сопоста­вления уровня цен на один и тот же товар, реализуемый через государст­венные магазины и на рынке. В этом случае за базу сравнения, как правило, принимается государственная цена.

Относительные статистические показатели координациипредставляют собой одну из разновидностей показателей сравнения. Они применяются для характеристики соотношения между отдельными частями статистической совокупности и показывают, во сколько раз сравниваемая часть совокупности больше или меньше части, которая принимается за основание или базу сравнения, т. е., по существу, они характеризуют структуру изучаемой совокупности, причем иногда более выразительно, чем относительные величины структуры.

Пример. На начало года численность специалистов с высшим образованием, занятых в ассоциации "Торговый дом", составила 53 человека, а численность специалистов со средним специальным образованием -106 человек. Приняв за базу сравнения численность специалистов с высшим образованием, рассчитаем относительную величину координации: 106:53=2,0:1,0, т. е. на двух специалистов со средним специальным образованием приходится один специалист с высшим образованием.

Относительные статистические показатели интенсивностипоказывают, насколько широко распространено изучаемое явление в той или иной среде. Они характеризуют соотношение разноименных, но связанных между собой абсолютных величин.

В отличие от других видов относительных величин относительные величины интенсивности всегда выражаются именованными величинами.

Рассчитываются относительные величины интенсивности делением абсолютной величины изучаемого явления на абсолютную величину, характеризующую объем среды, в которой происходит развитие или распространение явления. Относительная величина показывает, сколько единиц одной совокупности приходится на единицу другой совокупности.

Примером относительных величин интенсивности может служить показатель, характеризующий число магазинов на 10000 человек населения. Он получается делением числа магазинов в регионе на численность населения региона.

Пример. Число предприятий розничной торговли региона на конец года составило 6324. Численность населения данного региона на ту же дату составила 234,2 тыс. человек. Следовательно, на каждые 10000 человек в данном регионе приходится 27,3предприятия.

Примеры решения задач

Задача 1.Определить выполнение плана, динамику и плановое задание исходящего обмена отделения связи.

Таблица 1 - Исходящий обмен отделения связи, в тыс. ед.

Виды обмена
фактический плановый фактический
1. Письменная корреспонденция 2. Денежные переводы 3. Посылки

1. Основные приемы построения и выполнения группировок. - student2.ru

Основные приемы построения и выполнения группировок. - student2.ru

Основные приемы построения и выполнения группировок. - student2.ru

План является недовыполненным на 4% по денежным переводам, а наибольший процент выполнения плана по письменной корреспонденции.

1. Основные приемы построения и выполнения группировок. - student2.ru

Основные приемы построения и выполнения группировок. - student2.ru

Основные приемы построения и выполнения группировок. - student2.ru

По всем видам обмена напряженность плана свыше 100%, размер планового задания влияет на процент выполнения плана.

2. Основные приемы построения и выполнения группировок. - student2.ru

Основные приемы построения и выполнения группировок. - student2.ru

Основные приемы построения и выполнения группировок. - student2.ru т.о., в текущем году по сравнению с предыдущим по всем видам обмен увеличился.

9. Степенные средние статистические показатели: определение, примеры.

Средняя величина– это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Общих принципах применения средних величин.

1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.

2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.

3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.

4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качествеструктурных средних рассматриваются мода и медиана.

Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными.

Простая средняя Основные приемы построения и выполнения группировок. - student2.ru ,

где Xi – варианта (значение) осредняемого признака; m – показатель степени средней; n – число вариант.

Взвешенная средняя Основные приемы построения и выполнения группировок. - student2.ru ,

где Xi – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта; m – показатель степени средней; fi – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Средняя гармоническая простая

Основные приемы построения и выполнения группировок. - student2.ru

взвешенная

Основные приемы построения и выполнения группировок. - student2.ru

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

10. Структурные средние статистические показатели: определение, примеры.

Средняя величина – это обобщающая величина изучаемого признака в исследуемой совокупности, которая отражает его типичный уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Отсюда средняя величина выступает как "обезличенная", которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений.

Необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

· качественная однородность совокупности, по которой вычислена средняя величина.

· исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов

· при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показатель, на который она должна быть ориентирована.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней - отражает общие черты изучаемого явления; средние величины, рассчитанные для каждой группы групповыми средними - дают характеристику явления, складывающуюся в конкретных условиях данной группы.

1.1 Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины

Средние величины делятся на 2 больших вида:

степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая и др.). Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Если рассчитывать все виды степенных средних для одних и тех же данных, то их значения окажутся одинаковыми. Тогда действует правило мажорантности средних: с увеличением показателя степени средних увеличивается и сама средняя величина (  ).

структурные средние (мода, медиана). Мода и медиана определяются лишь структурой распределения. Поэтому их именуют "структурными позиционными средними". Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном ряду значений признака вполне определенное положение. Примерами таких величин являются средние мода (  ) и медиана (  ).

Мода – значение признака, которое имеет наибольшую частоту в статистическом ряду распределения.

Отыскание моды зависит от того, представлен ли варьирующий признак в виде дискретного или интервального ряда. Поиск моды в дискретном ряду происходит путем простого просматривания столбца частот. В этом столбце находится наибольшее число, характеризующее наибольшую частоту. Ей соответствует определенное значение признака, которое и является модой. Может оказаться, что два признака имеют одинаковую частоту. В этом случае ряд будет называться бимодальным.

В интервальном вариационном ряду модой приближенно считают центральный вариант интервала с наибольшей частотой. В таком ряде распределения мода вычисляется по формуле:

Основные приемы построения и выполнения группировок. - student2.ru

Где Основные приемы построения и выполнения группировок. - student2.ru - нижняя граница модального интервала;

Основные приемы построения и выполнения группировок. - student2.ru - модальный интервал;

Основные приемы построения и выполнения группировок. - student2.ru - частота в модальном интервале;

Основные приемы построения и выполнения группировок. - student2.ru - частота интервала перед модальным интервалом;

Основные приемы построения и выполнения группировок. - student2.ru - частота интервала после модального интервала.

Мода широко используется в статистической практике при изучении, например, покупательского спроса, регистрации цен и т.д.

Медиана – это вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части – со значениями признака меньше медианы и со значениями признака больше медианы. Чтобы найти медиану, необходимо отыскать значение признака, которое находится в середине упорядоченного ряда.

В ранжированных рядах несгруппированных данных нахождение медианы сводится к отысканию порядкового номера медианы по формуле:

Основные приемы построения и выполнения группировок. - student2.ru ,

где n – число членов ряда.

В случае четного объема ряда медиана равна средней из двух вариантов, находящихся в середине ряда.

В интервальных рядах распределения медианное значение оказывается в каком-то из интервалов признака x. Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Значение медианы вычисляется по формуле:

Основные приемы построения и выполнения группировок. - student2.ru ,

где Основные приемы построения и выполнения группировок. - student2.ru - нижняя граница медианного интервала;

Основные приемы построения и выполнения группировок. - student2.ru - медианный интервал;

Основные приемы построения и выполнения группировок. - student2.ru - половина от общего числа наблюдений;

Основные приемы построения и выполнения группировок. - student2.ru - сумма наблюдений, накопленная до начала медианного интервала;

Основные приемы построения и выполнения группировок. - student2.ru - число наблюдений в медианном интервале.

Средний уровень ряда характеризует обобщенную величину абсолютных уровней. Он рассчитывается по средней хронологической, т.е. по средней исчисленной из значений, изменяющихся во времени.

Наши рекомендации