Получение алюминия высокой чистоты
Для получения алюминия высокой чистоты (марок А995—А95) первичный алюминий технической чистоты электролитически рафинируют. Это позволяет снизить в алюминии содержание металлических и газообразных примесей и тем самым значительно повысить его электропроводность, пластичность, отражательную способность и коррозионную стойкость.
Электролитическое рафинирование алюминия осуществляют электролизом расплавленных солей по трехслойному способу. Сущность способа заключается в следующем. В рафинировочном электролизере имеются три расплавленных слоя. Нижний, наиболее тяжелый, лежит на токопроводящей подине и служит анодом; он называется анодным сплавом и представляет собой сплав рафинируемого алюминия с медью, которую вводят для утяжеления слоя. Средний слой — расплавленный электролит; его плотность меньше плотности анодного сплава и выше плотности чистого рафинированного (катодного) алюминия, находящегося над электролитом (верхний, третий жидкий слой).
При анодном растворении все примеси более электроположительные, чем алюминий (Fe, Si, Ti, Cu и др.), остаются в анодном сплаве, не переходя в электролит. Анодно растворяться будет только алюминий, который в форме ионов Al3+ переходит в электролит: Al– 3e → Al3+ .
При электролизе ионы алюминия переносятся к катоду, на котором и разряжаются: Al3+ + 3e → Al. В результате на катоде накапливается слой расплавленного рафинированного алюминия.
Если в анодном сплаве присутствуют примеси более электроотрицательные, чем алюминий (например, Ba, Na, Mg, Ca), то они могут электрохимически растворяться на аноде вместе с алюминием и в виде ионов переходить в электролит. Поскольку содержание электроотрицательных примесей в алюминии-сырце невелико, в заметном количестве в электролите они не накапливаются. Разряда этих ионов на катоде практически не происходит, так как их электродный потенциал электроотрицательнее алюминия.
В качестве электролита при электролитическом рафинировании алюминия в Советском Союзе и в большинстве стран применяют фторидно-хлоридный электролит, состав которого 55-60% BaCl2 , 35-40% AlF4+NaF и 0-4% NaCl. Молярное отношение NaF : AlF3 поддерживают 1,5-2,0; температура плавления электролита 720-730°C; температура процесса электролиза около 800°C; плотность электролита 2,7 г/см3 .
Анодный сплав готовят из первичного алюминия и чистой меди (99,90-99,95% Cu), которую вводят в металл в количестве 30-40%. Плотность жидкого анодного сплава такого состава 3-3,5 г/см3 ; плотность же чистого расплавленного катодного алюминия равна 2,3 г/см3 . При таком соотношении плотностей создаются условия, необходимые для хорошего разделения трех расплавленных слоев.
В четверной системе Al—Cu—Fe—Si, к которой относится анодный сплав, образуется эвтектика с температурой плавления 520°C. Охлаждая анодный сплав, содержащий примеси железа и кремния в количествах выше эвтектических концентраций, можно выделить железо и кремний в твердую фазу в виде интерметаллических соединений FeSiAl5 и Cu2 FeAl7 . Так как температура анодного сплава в карманах электролизера на 30-40°C ниже температуры анодного сплава в рабочем пространстве ванны, в них (по мере накопления в анодном сплаве железа и кремния) будут выделяться твердые интерметаллические осадки. Периодически удаляя эти осадки, очищают анодный сплав (без его обновления) от примесей железа и кремния. Так как в анодном сплаве концентрируется галлий, то извлекаемые из электролизера осадки (30-40 кг на 1 т алюминия) могут служить источником получения этого металла.
Для электролитического рафинирования служат электролизеры, которые по конструкции напоминают электролизеры с обожженными анодами для электролитического получения первичного алюминия, но имеют другое подключение полюсов: подина служит анодом, а верхний ряд электродов — катодом. Современные электролизеры для электролитического рафинирования алюминия рассчитаны на силу тока до 75 кА.
Электролитическое рафинирование алюминия является очень энергоемким производством. Расход электроэнергии в переменном токе, включая энергию, затраченную на подготовку электролита и анодного сплава, работу вентиляционных устройств и транспортных средств, а также потери на преобразование переменного тока в постоянный, составляет 18,5-21,0 тыс. кВтּч на 1 т алюминия. Энергетический к. п. д. рафинировочных электролизеров не превышает 5-7%, т. е. 93-95% энергии расходуется в виде потерь тепла, выделяемого в основном в слое электролита (примерно 80-85% от общего прихода тепла). Следовательно, основными путями дальнейшего снижения удельного расхода электроэнергии на электролитическое рафинирование алюминия являются совершенствование теплоизоляции электролизера (особенно верхней части конструкции) и снижение слоя электролита (уменьшение междуэлектродного расстояния).
Чистота алюминия, рафинированного по трехслойному методу, 99,995%; она определяется по разности с пятью основными примесями — железом, кремнием, медью, цинком и титаном. Количество получаемого металла такой марки может составлять 45-48% от общего выпуска (без его расшихтовки с более низкими, сортами).
Следует, однако, отметить, что в электролитически рафинированном алюминии содержатся в меньших количествах примеси других металлов, что снижает абсолютную чистоту такого алюминия. Радиоактивационный анализ позволяет обнаружить в электролитически рафинированном алюминии до 30 примесей, суммарное содержание которых примерно 60ּ10–4 %. Следовательно, чистота рафинированного алюминия по разности с этими примесями составляет 99,994%.
Помимо примесей, предусмотренных ГОСТом, в наиболее распространенной марке (А99) электролитически рафинированного алюминия содержится, %: Cr 0,00016; V 0,0001; Ga 0,0006; Pb 0,002; Sn 0,00005; Ca 0,002-0,003; Na 0,001-0,008; Mn 0,001-0,007; Mg 0,001-0,007; As<0,0001; Sb<0,00002; Bi<0,00001; Cd<0,000001; S 0,0007.
Один из источников загрязнения катодного алюминия — графитовые токоотводы, содержащие окись железа и кремния и постоянно соприкасающиеся с рафинированным алюминием. Если ток к катодному алюминию подводить непосредственно алюминиевыми шинами и применять инструмент из очень чистого графита, можно получать металл чистотой 99,999% по разности с определяемыми примесями (Fe, Si, Cu, Zn и Ti). B таком металле содержится в среднем, %: Si 0,0002; Fe 0,00032; Cu 0,0002; Zn 0,0002 и Ti 0,00005. Однако из-за технических трудностей такой способ подвода тока пока не нашел широкого промышленного применения.