Схемы движения воздуха в вентилируемых помещениях
Чтобы правильно расположить отверстия для подачи воздуха в помещение и для удаления его, необходимо выяснить влияние взаимного расположения этих отверстий на движение воздуха в помещении. Приточные струи обладают значительной дальнобойностью, они вовлекают в общее движение большие массы воздуха и являются основным фактором, определяющим характер движения воздуха в помещении. Однако, несмотря на ограниченный радиус действия вытяжных отверстий, их расположение в помещении также оказывает определенное влияние на перемещение воздушных потоков.
Ниже представлены схемы движения воздуха в помещении, полученные В.В.Батуриным и В.И.Ханженковым на плоской и частично пространственной моделях, которые дают возможность составить качественное представление о движении воздуха при различном взаимном расположении приточных и вытяжных отверстий.
Рассмотрим схему движения воздуха в помещении, когда приточное и вытяжное отверстия расположены в противоположных ограждениях, и помещение настолько большое, что струя распространяется как свободная. По мере удаления от приточного сечения количество воздуха в приточной струе всё время увеличивается, т.к. происходит подтекание воздуха из окружающего пространства по всей длине струи. Подсчитано, что на расстоянии 40Ro объем воздуха в струе будет в 6,2 раза больше поданного в помещение через приточное отверстие, т.е. объем присоединившегося к струе из окружающего пространства воздуха составляет 5,2 Lо.
В помещении, когда приточное и вытяжное отверстия расположены в противоположных ограждениях, при балансе притока и вытяжки оказывается, что только 16% перемещаемого воздуха будет удалено из помещения, а остальные 84% не будут удалены и пойдут на питание струи. В помещении конечных размеров (рисунок 2.21) не удаляемая через вытяжное отверстие часть воздуха струи образует обратный поток, направленный к началу струи.
Рисунок 2.21 – Схема взаимодействия приточной струи и всасывающего факела
Рисунок 2.22 – Приток через проем во всю стену, вытяжка через отверстие в центре торцовой стены
Воздух удаляется через отверстие в середине; приток через проем равный по площади противоположной стенке (рисунок 2.22).
Струя практически равномерно движется по помещению. При поступлении воздуха на кромках происходит некоторое поджатие струи и образуются небольшие области, заполненные вихрями (по углам). Далее поток выравнивается и двигается к вытяжному отверстию, заполняя всё сечение модели. Обратных потоков нет.
Во всех последующих схемах организации воздухообмена имеются обратные потоки воздуха.
Если высоту приточного отверстия уменьшить (рисунки 2.23, 2.24), движение свежего воздуха не полностью охватывает, помещение и там остаются застойные зоны или мертвые зоны.
Рисунок 2.23– Приток через проем части стены, вытяжка по центру противоположной стены
Рисунок 2.24 – Приток в нижней части, вытяжка по центру противоположной стены
В застойных зонах происходит собственное движение воздуха внутри зоны, обмен воздуха с окружающей средой незначителен. В таких зонах возникает опасность скопления вредностей особенно недопустимо скопление взрыво-и пожароопасных, а также ядовитых вредностей.
Наихудшая вентиляция при расположении приточного и вытяжного отверстий возле одного из перекрытий помещения (рисунок 2.25).
Рисунок 2.25 – Приток и вытяжка около нижнего перекрытия помещения
Воздух в циркуляционных потоках нельзя считать полностью застойным, т.к. в граничной зоне основного и циркуляционного потока частицы свежего воздуха неизбежно поступают в циркуляционный поток и наоборот – частицы воздуха из циркуляционного потока проскакивают в основной. Этот проскок будет тем больше, чем больше площадь соприкосновения обоих потоков.
В силу сказанного большая смена воздуха в циркуляционном потоке
происходит при расположении приточного и вытяжного отверстий на одной торцевой стенке (рисунок 2.26).
Рисунок 2.26 – Приточное и вытяжное отверстие на одной торцевой стенке
Весь поток воздуха поворачивается в сторону вытяжного отверстия. При этой схеме достигается наилучшее распределение воздуха в помещении.
При большой длине помещения струя, не достигнув противоположной
стены, распадается и в помещении образуется два кольца циркуляции (рисунок
2.27)
Рисунок 2.27 – Приток и вытяжка на одной торцевой стене в длинном помещении
Вышеописанные схемы распределения потоков воздуха относятся к изотермическим условиям.
Схемы циркуляции потоков воздуха при неизотермических условиях и при наличии источников тепловыделений получены В.В. Батуриным по результатам опытов на модели однопролетного производственного здания.
Если источник тепловыделений находится в центре помещения, и объемы приточного воздуха справа и слева одинаковы, ось тепловой струи вертикальна и является осью симметрии образующихся двух колец циркуляции(рисунок 2.28).
Рисунок 2.28 – Источник тепловыделений находится в центре помещения (теплый период, подача в рабочую зону)
Если источник тепловыделений приближен к одному из приточных отверстий (рисунок 2.29), то тепловые струи препятствуют проникновению приточного воздуха слева–произойдет взаимодействие тепловой и приточной струй. Струи, вливающиеся справа также отклоняют тепловую струю.
Рисунок 2.29 – Источник тепловыделений приближен к одному из приточных отверстий (теплый период, подача в рабочую зону)
Если источник тепловыделений смещен, но воздух подается лишь в одно отверстие (рисунок 2.30), то тепловая струя оттесняется к середине и образуется два кольца циркуляции
Рисунок 2.30 – Источник тепловыделений смещен, воздух подается в одно отверстие (теплый период, подача в рабочую зону)
В холодный период года при подаче воздуха через фрамуги в верхней зоне на высоте не менее 4 м от пола (рисунок 2.31) опускающаяся струя разветвляется у пола и образует два кольца циркуляции. В правом – пониженные температуры.
Рисунок 2.31 – Приток через фрамуги в верхней зоне в холодный период