Прочность на разрыв у кевлара 270-540 кг/мм2, а у современных углепластиков - до до 900 кг/мм2, так что углепластик тут вне конкуренции
А вот если на удар - то карбон хрупок, ударная вязкось всего 35-40 Дж/г, даже у стеклопластиков выше.. . А у кевлара - 78
Правда сейчас появились разработки углепластиков, армированных нанотрубками, вот они - прочнее всего на удар, вязкость до 870 Дж/г (!!) Если, конечно, разработчики не врут.
Полимерные композиционные материалы из переплетённых нитей углеродного волокна, расположенных в матрице из полимерных (например, эпоксидных) смол. Плотность — от 1450 кг/м³ до 2000 кг/м³.
Материалы отличаются высокой прочностью, жёсткостью и малой массой, часто прочнее стали, но гораздо легче (по удельным характеристикам превосходит высокопрочную сталь, например 25ХГСА).
Вследствие дороговизны (при экономии средств и отсутствии необходимости получения максимальных характеристик) этот материал обычно применяют в качестве усиливающих дополнений в основном материале конструкции.
О КАРБОНЕ
Никакие материалы не идут в сравнение, когда речь заходит о элементах, состоящих из карбона. Слои карбона могут собираться двумя способами: мокрым способом ( самый распространенный) и сухим ( более сложный процесс).
Сухой карбон.
Это лучшее из лучшего, признаком чего, является и его высокая стоимость. Сухой карбон очень легкий и чрезвычайно прочный. Будьте готовы заплатить около $3-4 тыс. за капот из такого материала.
Мокрый карбон.
Материал достаточно хороший, но не лучший. Он тяжелее Сухого карбона, и не такой прочный. Стоимость капота из этого материала начинается от 1500$ .
Их отличие - при проведении рукой по сухому чувствуется его ребристая структура (если он не покрыт лаком), а мокрый карбон совсем гладкий на ощупь.
Волокна черного цвета, состоящие из множества нитей толщиной от 0,005 до 0,010 мм сплетенных в ткани из которых можно изготовить различные формы, с очень высокими прочностными техническими характеристиками. Сами по себе ткани не используются, а используются, как исходное сырье пропитанное эпоксидной смолой, с последующим застыванием образуют очень прочный и легкий материал. Прочность некоторых углепластиков выше высокопрочной стали сорта 25ХГСА но значительно меньше ее по весу. удельный вес готового углепластика 1.5 - 2 килограмма на квадратный дециметр - у стали 8 кг на квадратный дециметр. Разница масс в 4 - 6 раз.
Прочность карбона в основном зависит от качества применяемой эпоксидной смолы. Самые лучшие углеткани продаются уже пропитанными смолой, остается только уложить их в форму и отправить в автоклав для застывания.
Изготовление формы: Чтобы изготовить простейшую матрицу необходимо иметь готовый по форме образец бампера, капота либо любой другой детали изготовленных из любого материала, либо используя готовый заводской образец. Для избежания прочного склеивания образца с будущей матрицой, ее необходимо промазать слоем разделителя. В качестве разделителя может служить мыло, эдельвакс, воск растворенный в бензине, Циатим-221, кремнеорганические смазки. В качестве основы для матрицы, можно использовать монтажную пену, гипс, а также композитные материалы. Если матрица выполняется из композитных материалов, то самым дешевым ее источником является стекловолокно пропитанное обычной эпоксидной смолой. Если матрица имеет сложную форму, то ее приходится делать разъемной, в одном или нескольких местах. Места разъема должны быть зафиксированы и иметь точную позицию друг относительно друга. Лучше всего подходит штифтовое позициолнирование с последующим скреплением болтами.
Все монококи самых современных суперкаров и формулы один, выполняются с использованием углеродного волокна, для большей прочности в конструкцию добавляют титановые и сотовые структуры. Именно из за карбоновой конструкции эти автомобили так дороги. Мало того, что сам материал не дешев, так еще и все производство происходит практически полностью в ручном режиме.
Стоимость углеродного волокна очень высока и детали получаемые с помощью нее соответственно тоже. Цена за углеткань начинается от 5000 руб за 1 кг или 5 метров квадратных, при толщине 0.25 мм. Некоторые американские истребители и бомбардировщики тоже делают из карбона и стоимость бомбардировщика B2 например: составляет более 2 миллиардов долларов !!!
В домашних условиях изготовить такой же прочный карбон как и в заводских, скорей всего не получится, так как для качественного формования крупных деталей, понадобиться большой вакуумный автоклав, позволяющий формовать в вакууме и при заданной иногда немалой температуре, более 150 градусов.
Эпоксидные смолы застывающие при комнатных температурах не обладают и половиной той прочности, нежели полимеризованные с заданной картой температур, в условиях вакуумного автоклава.
Небольшойсписоккомпанийпроизводящихcarbon:
Toray
Nippon Graphite Fiber Corporation
FORMAX
Porcher Industries
Seal SpA
SGL Group
Mapei
Zoltek
Saertex
Ballar
Hexcel Corporation
Taiwan Electric Insulator
A&P Technology
FTS SpA
Epotech
Zyvex Technologies
Isovolta AG
Применение
Углепластики широко используются при изготовлении лёгких, но прочных деталей, заменяя собой металлы, во многих изделиях от частей космических кораблей до удочек, среди которых:
· ракетно-космическая техника;
· авиатехника (самолётостроение, вертолётостроение (например, несущие винты));
· судостроение (корабли, спортивное судостроение);
· автомобилестроение (спортивные автомобили (например, бамперы, пороги, двери, крышки капотов), мотоциклы, прототипы MotoGP, болиды Формулы 1 (кокпиты и обтекатели), а также при оформлении салонов;
· наука и исследования;
· усиление железобетонных конструкций;
· спортивный инвентарь (роликовые коньки, велосипеды, футбольные бутсы, хоккейные клюшки, лыжи, лыжные палки и ботинки, ракетки для тенниса, основания для настольного тенниса, лезвия коньков, стрелы, оборудование виндсерфинга, моноласты), вёсла;
· медицинская техника;
· протезостроение
· рыболовные снасти (удилища);
· профессиональные фото- и видеоштативы;
· бытовая техника (отделка корпусов телефонов, ноутбуков, рукояти складных ножей и пр.);
· моделизм;
· музыкальные инструменты (струны);
· изготовление индивидуальных супинаторов (особенно для спорта);
· инструменты рукоделия (вязальные спицы);
· карбон слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских и широкодиапазонных гамма-детекторов (через которые излучение проникает в детектор).
Преимущество карбона перед другими материалами связанно с его выдающимися свойствами. В первую очередь это малый вес и вместе с тем потрясающая прочность, так же высокая стабильность и отличная сопротивляемость усталости. Сочетание всех этих достоинств в одном материале и делает его уникальным и незаменимым во многих отраслях.
Чтобы лучше понять, как один материал может обладать таким количеством замечательных свойств, необходимо знать, что такое карбон из чего и как его получают.
Карбон, он же углепластик, он же графит – чаще всего под этим термином подразумевают изделие, сделанное из композитного материала с применением углеволокна.
Композит подразумевает сочетание двух и более компонентов с разными свойствами. Например, папье-маше (волокна бумаги и клей), древесина (волокна целлюлозы и лигнин), армированные пластики (полимер и усиливающий материал), железобетон (металлический каркас и бетон).
Сами по себе компоненты этих материалов не обладают какими-то уникальными прочностными характеристиками, но выступая в союзе, придают материалу новые свойства, где лучшие стороны одного материала дополняют лучшие стороны другого. Композитами можно считать практически все структуры, все ткани организмов растительного и животного мира. Поэтому, можно смело утверждать, что все самые совершенные материалы являются композиционными.
Плетение ткани, в свою очередь, может иметь много видов. Распространенными являются: плейн (plain) – полотняное, простое, плетение; твил (twill) – саржевое, диагональное плетение (елочка); сатин (satin) – гладкая, блестящая лицевая поверхность, на которой преобладают уточные нити.
Говоря об углепластике нельзя не затронуть следующее важнейшее преимущество перед другими материалами – анизотропность. В отличие от металлов, которые обладают изотропностью (т.е. независимостью свойств от направления), углеволокна имеют выраженную анизотропию, т.е. четкую зависимость своих физических свойств от направления. Это уникальное свойство можно использовать для придания конструкции требуемых характеристик. Используя ориентацию волокон в изделии при создании, например, велосипедной рамы из карбона, инженер может увеличить торсионную жесткость при этом сделать ее упругой и податливой к продольным нагрузкам. Это свойство позволит раме лучше гасить удары.
Кроме того, в отличие от металлов углепластик не ограничен свободой при выборе формы изделий. Если в металлической конструкции сложность формы ограничивается изгибами и соединениями (которые неизбежно снижают прочность и являются концентраторами нагрузки), то изделие из карбона может формоваться как единое целое, не зависимо от сложности конструкции. Это позволяет избежать появления слабых мест – концентраторов нагрузок, т.к. нагрузка распределяется по всей площади.
Также можно отметить отличные демпфирующие и фрикционные свойства углепластика. Благодаря последним, карбон все чаще используется в производстве сцеплений и тормозных механизмов hi-end класса.
Сочетание вышеперечисленных качеств делает этот удивительный материал незаменимым во многих отраслях. Не зря за последние десятилетия ассортимент изделий из карбона многократно вырос. Сегодня такие высокотехнологичные отрасли как космонавтика, авиация, профессиональный спорт невозможно представить без этого уникального, незаменимого, красивого материала. Материала настоящего и будущего – углепластика.
Из-за волокнистой природы этого материала, он имеет намного более явное "зерно" чем металл. Хорошо разработанная карбоновая рама может иметь структуру, выстроенную таким способом, чтобы обеспечить максимальную прочность в направлениях максимальных напряжений.
Недостаток
При производстве углепластиков необходимо очень строго выдерживать технологические параметры, при нарушении которых прочностные свойства изделий резко снижаются. Необходимы сложные и дорогостоящие меры контроля качества изделий (в том числе, ультразвуковая дефектоскопия, рентгеновская, токовихревая, оптическая голография и даже акустический контроль).
Другим серьёзным недостатком углепластиков является их низкая стойкость по отношению к ударным нагрузкам. Повреждения конструкций при ударах посторонними предметами (даже при падении инструмента на неё) в виде внутренних трещин и расслоений могут быть невидимы глазу, но приводят к снижению прочности; разрушение повреждённой ударами конструкции может произойти уже при относительной деформации, равной 0,5 %.
К сожалению, в велосипедных применениях, углеволокно - не полностью отработанная технология, как металлические рамы, состоящие из труб. Велосипеды подвергаются очень широкому диапазону различных напряжений с многих различных направлений. Даже с моделированием на компьютере, нагрузки не могут быть полностью предсказаны заранее. Углеволокно имеет большой потенциал, но современные карбоновые рамы не демонстрируют уровень надежности и долговечности, которые желательны для туристического использования в тяжелых условиях. В частности, слабыми точками являются области, где металлические части, типа концов вилок, оболочки каретки, рулевой колонки, и т. д. соединяются с карбоновой рамой. Эти области могут быть ослаблены в плане коррозии через какое-то время, и привести к поломке.
В геометрии, нет ничего столь же прочного, как треугольник. Велосипеды с "ромбовидной" рамой состоят, в общем, из двух треугольников. Элегантность и простота этого решения неоспорима. Миллиарды велосипедов с "ромбовидной" рамой были сделаны из труб более чем за столетие, и в течение этого времени, сотни тысяч очень умных людей потратили миллиарды часов поездок и думали относительно путей к более тонкой "настройке" их велосипедов. Трубчатая ромбовидная рама была четко "настроена" эволюционным процессом к совершенству, применяемым основным пропорциям и материалам.
Стеклоуглеволокно (стекловолокно с добавлением карбона)
Это - дешевый материал. Вы получаете или самодельное стекловолокно (смесь распыленного стекловолокна) как наполнитель, или тонкий слой углеродистой ткани «ради вида». Это лучшее, что можно ожидать от такого материала, по причине того, что люди жалеют вкладывать деньги в качественные материалы. Капот такого плана можно приобрести менее, чем за 1000$ (на аукционах типа ebay).
Карбон,титан или алюминий?
Попробуем взглянуть на выбор велосипедной рамы немного с другой стороны, нежели цена. То есть, рассмотреть материал для ее изготовления, основываясь на физических и прочностных характеристиках материалов.
Для этого обратимся к некоторым терминам и определениям физики твердого тела, а именно теории упругости.
Правильный выбор материала является сложной задачей, однозначное решение которой позволяет оптимизировать технологию изготовления, повысить долговечность конструкции в целом. Сейчас для производства велосипедных рам класса hi- end используются только три конструкционных материала: алюминий, титан и карбон. Первые два – это металлические сплавы, а последний - композиционный материал на основе углеволокна и эпоксидного связующего.
Основной механической характеристикой конструкционного материала является предел прочности. Это отношение значения растягивающей силы непосредственно перед разрывом к наименьшей площади поперечного сечения образца в месте разрыва. Для карбона (на основе углеволокна Т700) эта величина порядка 1500 МПа, для титанового сплава (3 Al/2.5 V) порядка 800 МПа, для алюминия (6061) порядка 60 МПа. В скобках приведены марки, наиболее часто используемые в велосипедной индустрии.
Следующая важная характеристика – предел текучести, напряжение при котором начинает возникать пластическая деформация, другими словами, при разгрузке от которого возникает остаточная деформация заданной величины. Для карбона такие данные не приводятся, для титана порядка 300 МПа, для алюминия порядка 20 МПа.
Ну и в завершение насколько слов о плотности. Чем меньше плотность, тем легче материал. Плотность карбона около 2 г/см3, титана 4,5 г/см3, алюминия 2,7 г/см3.
Из вышесказанного следует, что у каждого материала есть свои сильные и слабые стороны. Однако, для велосипедной специфики нельзя выделить какое то одно определяющее свойство материала. Например, при лучших прочностных/весовых характеристиках, карбон очень хрупкий и боится ударов и царапин. Алюминий легкий, но пластичный и с низкими прочностными свойствами. Титан прочный и упругий, но сравнительно тяжелый.
Истинная картина проясняется, если рассмотреть свойства каждого материала в целом. Тогда бесспорным лидером становится титан. Это обьяснимо.
Причиной разрушения велосипедной рамы являются не чрезмерные нагрузки, а накопление в процессе эксплуатации изделия мелких внутренних повреждений (которые принято называть трещинками или дислокациями), спровоцированное периодическим влиянием внешних сил (напряженного состояния). Определяющей характеристикой металла, так или иначе реагировать на напряженное состояние, является пластичность.
Пластичность металла есть функция его состояния, зависящая от внешних и внутренних факторов, которая выражается в способности твердых тел необратимо менять свою форму без разрушения под действием приложенных сил. Другими словами, существует некоторая максимальная величина нагрузки, при достижении которой происходит разрыв межмолекулярных связей кристаллической решетки металла, что ведет к образованию внутренних дефектов структуры, которые не могут исчезнуть, а могут только накапливаться. Анализ показал, что у большинства конструкционных металлов наиболее типичным является разрушение, которое начинает развиваться задолго до достижения такой максимальной нагрузки. Виной тому циклические нагрузки. При этом пластические деформации и разрушение оказываются связанными настолько тесно, что их можно рассматривать как единый процесс с общей энергией активации.
Установлено, что разрушению материала от усталости (при циклических нагрузках) предшествует накопление локальных микросдвигов и, следовательно, появление пластических деформаций, исчерпание которых приводит к местным разрушениям.
Всё это говорит о том, что пластичные металлы более подвержены накоплению неупругих деформаций (усталости) и следовательно ресурс их значительно ниже.
Физической характеристикой пластичности металла является предел текучести (условный предел текучести). Эта величина определяет усилие при котором в материале появляется пластическая деформация. Чем меньше предел текучести, тем пластичнее материал, а следовательно меньше его ресурс. Предел текучести алюминия в 15 раз меньше, чем у титана!
Ещё одной причиной разрушения конструкционных материалов являются внешние дефекты (царапины). Стойкость материала к царапинам определяется твердостью. Твердость титана по Бриннелю составляет 103 ед., а у алюминия 25 ед., то есть у титана она в 4 раза выше!
У титана, согласно этой характеристике, есть ещё одно большое достоинство – он очень долго сохраняет первоначальный внешний вид и легко его восстанавливает (с помощью дополнительной механической обработки).
Суммируя всё сказанное, получается, что применительно к велосипедной раме титан выглядит материалом практически идеальным. Также это можно сказать про сочетание титана и карбона (углепластика). Однако, дорогой читатель, окончательный выбор всё равно остаётся за Вами.