Понятие систем управления и их составляющих

Понятие сложных систем

Сложная система — система, состоящая из множества взаимодействующих составляющих (подсистем), вследствие чего сложная система приобретает новые свойства, которые отсутствуют на подсистемном уровне и не могут быть сведены к свойствам подсистемного уровня.

Сложная система — составной объект, части которого можно рассматривать как системы, закономерно объединенные в единое целое в соответствии с определенными принципами или связанные между собой заданными отношениями. Сложную систему можно расчленить (не обязательно единственным образом) на конечное число частей, называемое подсистемами; каждую такую подсистему (высшего уровня) можно в свою очередь расчленить на конечное число более мелких подсистем и т. д., вплоть до получения подсистем первого уровня, т. н. элементов сложной системы, которые либо объективно не подлежат расчленению на части, либо относительно их дальнейшей неделимости имеется соответствующая договоренность. Подсистема, таким образом, с одной стороны, сама является сложной системой из нескольких элементов (подсистем низшего уровня), а с другой стороны — элементом системы старшего уровня.

В каждый момент времени элемент сложной системы находится в одном из возможных состояний; из одного состояния в другое он переходит под действием внешних и внутренних факторов. Динамика поведения элемента сложной системы проявляется в том, что состояние элемента и его выходные сигналы в каждый момент времени определяются предыдущими состояниями и входными сигналами, поступившими как в данный момент времени, так и ранее. Элементы сложной системы функционируют не изолированно друг от друга, а во взаимодействии.

В области организации производства и технологии типичные пример сложной системы

— производственный комплекс предприятия как совокупность производственных комплексов цехов и участков, каждый из которых содержит некоторое число технологических линий; последние состоят из станков и агрегатов, рассматриваемых обычно как элементы сложной системы и т.п

Методы исследования сложных систем

Основной метод исследования — математическое моделирование, в том числе имитация процессов функционирования сложной системы на ЭВМ (машинный эксперимент). Для моделирования сложной системы необходимо формализовать процессы ее функционирования, т. е. представить эти процессы в виде последовательности четко определяемых событий, явлений или процедур, и затем построить математическое описание сложной системы. Взаимодействие элементов сложной системы обычно представляют как обмен сигналами между ними и описывают четырьмя моделями: моделью формирования выходного сигнала элемента с учетом условий его функционирования; сопряжения элементов сложной системы сетью каналов связи, обеспечивающих передачу сигналов между элементами; изменения сигнала в процессе его прохождения через канал; поведения элемента при получении им сигнала. При формализации сопряжения элементов сложной системы обычно вход (выход) элемента представляют в виде совокупности «элементарных» входов (выходов) — по числу характеристик, описывающих соответствующие сигналы. Предполагается, что характеристики сигналов передаются в сложной системе независимо друг от друга по «элементарным каналам», связывающим входы и выходы соответствующих элементом.

Изучение отношений между элементами и подсистемами, определение роли и места каждой подсистемы в общем процессе функционирования системы составляют предмет структурного анализа сложных систем. Методы структурного анализа позволяют выделить в сложной системе наборы подсистем, находящихся в заданных отношениях, и представить сложную систему как совокупность объектов с хорошо изученными типичными структурами.

Принцип равнорентабельности.

В качестве показателя взаимовыгодности контактов берем рентабельность.

Понятие систем управления и их составляющих - student2.ru

Принцип равноприбыльности.

Назначается такая цена, чтобы прибыли были одинаковы.

Понятие систем управления и их составляющих - student2.ru

Метод экспертиз.

Часто при принятии управленческого решения в слабо формализуемых задачах применяется метод экспертиз. Смысл заключается в том, что имеется n объектов. Эти объекты нужно ранжировать по степени их важности, ценности и т.д.

Для того, чтобы их ранжировать по степени важности привлекаются n экспертов.



  i n
           
           
           
j       aij    
..            
m            

i – объекты.

На пересечении i – го столбца и j-й строки проставляются баллы.

аij – балл, который j-й эксперт проставил i-му объекту.

Тогда ∑ аij может служить критерием важности i – го объекта. а ≤ аij ≤ А.

Большое значение имеет диапазон бальных оценок.

Применение таких таблиц не всегда удобно для эксперта. Применяется метод парных сравнений. Каждому эксперту вручается парная таблица.

i
 
     
     

По столбцам и по строкам перечисляются объекты. На пересечении S-й строчки и К-го столбца указывается индекс объекта, которому эксперт отдает предпочтение.

Далее суммируются предпочтения каждого объекта, после чего происходит ранжировка объектов по убыванию набранных предпочтений.

22. Многокритериальность в задачах принятия решений

Современные производственные системы очень сложны.

Х={x1,x2,…xn},

где х1,…х2 – совокупность показателей, каждый из которых характеризует одно из свойств.

Орган управления должен учесть все эти разнообразия и принять определенные решения.

Пример 1. Чемпионат мира по конькобежному спорту (мужчины).

Каждый из участников бежит:

- 1 дистанц. – 500 м,

- 2 дистанц. – 1500 м,

- 3 дистанц. – 5000 м,

- 4 дистанц. – 10000м.

Каждый участник показывает определенный результат – занятые места.

Необходимо определить чемпиона мира.

___

i =1,4;

___

j =1,4;

tij – время, которое потратил j-тый спортсмен на i-той дистанции;

уij – место, которое j-тый спортсмен занял на чемпионате.

Необходимо построить критерий, который позволил бы определить лучшего.

Многокритериальность реальных задач управления состоит в том, что менеджеру необходимо оптимизировать управляемую им систему сразу по нескольким критериям. Например, добиться максимизации прибыли при минимуме затрат. Ясно, что этого невозможно достичь. Минимум затрат равен 0, он достигается при прекращении выпуска продукции (оказания услуг) и ликвидации предприятия. Но при этом прибыль тоже равна 0. Если же добиться максимально возможной прибыли, то затраты при этом также будут достаточно большими, отнюдь не минимальными.

Теория управления предлагает два основных способа борьбы с многокритериальностью. Один из них состоит в том, чтобы превратить все критерии, кроме одного, в ограничения, и решать задачу оптимизации по оставшемуся критерию (о задачах оптимизации рассказывается в главе 3.2). Например, можно потребовать, чтобы затраты не превосходили заданной величины, и при этом условии максимизировать прибыль. Второй вариант состоит в том. Чтобы принять, что прибыль должна быть не меньше заданной величины (например, если выполняется определенный заказ), а затраты при этом условии минимизировать.

Другой подход в борьбе с многокритериальностью состоит в том, чтобы на основе исходных критериев сконструировать один новый и его оптимизировать. В рассматриваемом случае можно использовать рентабельность (по затратам), т.е. частное от деления прибыли на затраты. При максимизации рентабельности находится наилучшее (в определенном смысле) соотношение между затратами и прибылью.

Есть и другие методы борьбы с многокритериальностью. Например, можно выделить все варианты решений менеджера, при которых прибыль мало отличается от максимально возможной, а затем в этой области минимизировать затраты [2]. Или же сначала выделить все Парето-оптимальные варианты решений менеджера, т.е. все те решения, которые не хуже любого возможного решения хотя бы по одному критерию, а затем анализировать множество Парето-оптимальных решений [5].

Аналогична ситуация и с лозунгом: «Максимум прибыли при минимуме риска». Здесь, как и в ранее разобранном случае, надо либо максимизировать прибыль при задании верхней границы для риска, либо минимизировать риск при заданной прибыли, либо конструировать из двух критериев один. Дополнительная сложность состоит в необходимости численно оценивать риск.

Понятие сложных систем

Сложная система — система, состоящая из множества взаимодействующих составляющих (подсистем), вследствие чего сложная система приобретает новые свойства, которые отсутствуют на подсистемном уровне и не могут быть сведены к свойствам подсистемного уровня.

Сложная система — составной объект, части которого можно рассматривать как системы, закономерно объединенные в единое целое в соответствии с определенными принципами или связанные между собой заданными отношениями. Сложную систему можно расчленить (не обязательно единственным образом) на конечное число частей, называемое подсистемами; каждую такую подсистему (высшего уровня) можно в свою очередь расчленить на конечное число более мелких подсистем и т. д., вплоть до получения подсистем первого уровня, т. н. элементов сложной системы, которые либо объективно не подлежат расчленению на части, либо относительно их дальнейшей неделимости имеется соответствующая договоренность. Подсистема, таким образом, с одной стороны, сама является сложной системой из нескольких элементов (подсистем низшего уровня), а с другой стороны — элементом системы старшего уровня.

В каждый момент времени элемент сложной системы находится в одном из возможных состояний; из одного состояния в другое он переходит под действием внешних и внутренних факторов. Динамика поведения элемента сложной системы проявляется в том, что состояние элемента и его выходные сигналы в каждый момент времени определяются предыдущими состояниями и входными сигналами, поступившими как в данный момент времени, так и ранее. Элементы сложной системы функционируют не изолированно друг от друга, а во взаимодействии.

В области организации производства и технологии типичные пример сложной системы

— производственный комплекс предприятия как совокупность производственных комплексов цехов и участков, каждый из которых содержит некоторое число технологических линий; последние состоят из станков и агрегатов, рассматриваемых обычно как элементы сложной системы и т.п

Методы исследования сложных систем

Основной метод исследования — математическое моделирование, в том числе имитация процессов функционирования сложной системы на ЭВМ (машинный эксперимент). Для моделирования сложной системы необходимо формализовать процессы ее функционирования, т. е. представить эти процессы в виде последовательности четко определяемых событий, явлений или процедур, и затем построить математическое описание сложной системы. Взаимодействие элементов сложной системы обычно представляют как обмен сигналами между ними и описывают четырьмя моделями: моделью формирования выходного сигнала элемента с учетом условий его функционирования; сопряжения элементов сложной системы сетью каналов связи, обеспечивающих передачу сигналов между элементами; изменения сигнала в процессе его прохождения через канал; поведения элемента при получении им сигнала. При формализации сопряжения элементов сложной системы обычно вход (выход) элемента представляют в виде совокупности «элементарных» входов (выходов) — по числу характеристик, описывающих соответствующие сигналы. Предполагается, что характеристики сигналов передаются в сложной системе независимо друг от друга по «элементарным каналам», связывающим входы и выходы соответствующих элементом.

Изучение отношений между элементами и подсистемами, определение роли и места каждой подсистемы в общем процессе функционирования системы составляют предмет структурного анализа сложных систем. Методы структурного анализа позволяют выделить в сложной системе наборы подсистем, находящихся в заданных отношениях, и представить сложную систему как совокупность объектов с хорошо изученными типичными структурами.

Понятие систем управления и их составляющих

Управление – воздействие на управляемую систему с целью обеспечения требуемого ее поведения

Экскурс в историю:

Понятие систем управления и их составляющих - student2.ru

Понятие систем управления и их составляющих - student2.ru

Социальная систе́ма — целостная структура, основным элементом которой являются люди, их взаимодействия, отношения и связи. Эти связи, взаимодействия и отношения носят устойчивый характер и воспроизводятся в историческом процессе на основе совместной деятельности людей, переходя из поколения в поколение.

Социальная система — это совокупность социальных явлений и процессов, которые находятся в отношениях и связи между собой и образуют некоторый целостный социальный объект.

Если мы рассматриваем некоторую систему управления, то в общем-то она включает в себя:

- орган управления (ОУ);

- управляемый объект (УО).

Наши рекомендации