Попутные продукты, образовавшиеся осаждением из растворов. Фосфогипсы.
Фосфогипс содержит от 80 до 98% гипса и может быть отнесен к гипсовому сырью. Высокая дисперсность фосфогипса (Sya = 3500—3800 см2/г) позволяет исключить из технологического процесса дробление и грубый помол. Вместе с тем высокая влажность фосфогипса (до 40%) усложняет его транспортирование и подготовку и приводит к значительным расходам топлива на сушку. Наличие в фосфогипсе водорастворимых в особенности фосфор- и фторсодержащих примесей усложняет переработку отходов по сравнению с переработкой природного гипсового камня, вызывает необходимость промывки, нейтрализации и др. и обусловливает соответственно более высокие тепловые затраты. При обычной технологии гипсовые вяжущие на основе фосфогипса низкокачественны, что объясняется высокой водопотребностью фосфогипса, обусловленной большой пористостью образуемого полугидрата. Если водопотребность обычного строительного гипса составляет 50—70%, то для получения теста нормальной густоты из фосфогип-сового вяжущего без дополнительной обработки требуется воды 120— 130%.
Отрицательное влияние на строительные свойства фосфогипса содержащихся в нем примесей можно несколько снизить домолом фосфогипса и формованием изделий методом виброукладки. В этом случае качество фосфогипсового вяжущего повышается, хотя и остается ниже, чем строительного гипса из природного сырья.
Исследования показали, что основной причиной ухудшения вяжущих свойств непромытого фосфогипса является образование значительного количества ангидрита т. е. безводного сульфата кальция при обжиге под влиянием кислых фосфатных и фтористых соединений. С ростом содержания нерастворимого ангидрита выше 30% прочность вяжущих приближается к нулю.
Примеси в фосфогипсе свободных фосфорной и серной кислот, растворимых солей замедляют твердение гипсовых вяжущих. Осложняет технологию также выделение фтористых газов при тепловой обработке, из-за повышенной кислотности происходит коррозия оборудования.
Технологические процессы получения гипсовых вяжущих, основным компонентом которых служит полугидрат сульфата кальция или ангидрит, включают подготовку исходного продукта к обжигу и обжиг.
Основные методы подготовки фосфогипса в производстве гипсовых вяжущих можно разделить на 4 группы:
1-я — промывка фосфогипса водой;
2-я — промывка в сочетании с нейтрализацией и осаждением примесей в водной суспензии;
3-я — метод термического разложения примесей;
4-я — введение нейтрализующих, минерализующих и регулирующих кристаллизацию добавок перед обжигом и после него.
Методы 1-й и 2-й групп связаны с образованием значительного количества загрязненной воды (2—5 м3 на 1 т фосфогипса), большими затратами на их удаление и очистку. Большинство методов термического распада примесей (3-я группа) основано на обжиге фосфогипса до образования растворимого ангидрита с дальнейшей его гидратацией и повторным обжигом до полугидрата. Широкого применения они пока не имеют так же, как и методы 4-й группы.
Для реализации последних необходимы дефицитные добавки и они не обеспечивают постоянные свойства вяжущего.
Попутные продукты
Минеральным сырьем 1 класса являются попутные продукты промышленности нерудных строительных материалов и горно-обогатительных комбинатов (ГОК). «Хвосты» обогащения ГОКов, содержащие в основном кварц, полевые шпаты, карбонаты кальция и магния, могут использоваться в качестве заполнителей для производства бетонных и растворных смесей, если по размеру зерен удовлетворяют требованиям действующих стандартов.
Техногенным сырьем 2 класса являются металлургические шлаки, золы и шлаки, образовашиеся при сжигании твердого топлива на ТЭС, шламы глиноземной и химической промышленности, пыль газоочистки производства ферросилиция и другие. Эти продукты, во многом различаясь по химическому и минералогическому составу, могут использоваться и в качестве вяжущего материала и как минеральные добавки в бетонах и растворах.
Продукты 3 класса пока не находят широкого применения в производстве строительных материалов из-за разнообразия процессов, происходящих в отвалах. Наиболее подробно изучены горелые породы угледобывающей промышленности, которые могут применяться как неактивные минеральные компоненты бетонных и растворных смесей.