Методика светотехнического расчета
Этот расчет реализуется в три этапа. На первом этапе студент определяет исходные данные. К ним относятся: 1) характер осветительного прибора - тип и мощность лампы, тип прожектора;
Примечания. 1. Источниками света могут быть лампы накаливания (ЛН), газонаполненные типа ДРЛ или ксеноновые [1.2.8]. 2. Мощности лампы Рл в прожекторах могут быть различными [1,2], но лучше принимать для прожекторов 150, 200, 250, 500. 750, 1000 Вт и более.
3. Наиболее часто применяются прожекторы заливающего света (ПЗС). В них используются в основном ЛН, а в ПЗС-45 целесообразно применять ДРЛ [1,2.8]. 2) высота установки прожектора над уровнем земли Н. м;
Примечания. 1. Высоту Н следует принимать для прожекторных мачт [10], 12,[15], [20] и [30]м [8] (в квадратах указаны типовые Н).
2. Величина Н зависит от максимальной высоты сооружения и оборудования Нmax, имевшихся на рассматриваемой площадке. Поэтому Н следует принимать на 3...10 м выше Нмах. Чем выже Н, тем меньше зона теней и полутеней на освещаемой площадке.
3) назначение и площадь освещаемой площадки, S. м2;
Примечание. Форма площадки (квадратная, прямоугольная. Г- или Т- образная) влияет только на размещение мачт.
4) нормативная освещенность Еmin рассматриваемой площадки по проекту организации строительства для охранного освещения и рабочих мест по проекту производства работ для рабочего освещения. Величина Еmin принимается по СНиП I1-4-79, СНиП III-4-80* и ГОСТ 12.1.046-85. При этом рабочее освещение при строительстве зданий складывается из охранного и местного освещений. Последнее как правило выполняет в виде гирлянды при строительстве здания или фары, установленной на экскаваторе
- 21 -
или кране, при выполнении нулевого цикла работ. Расчет гирлянды ведут как расчет линейной лампы без светильника, а фары -как расчет улучшенного светильника, но при коэффициентах отражения равных нулю.
На втором этапе проектирования студент определяет количество прожекторов. Для этого используют методы: удельной мощности, точечный и наложение на освещаемую площадку изолюкс равной освещенности [1,8]. При последнем методе требуются готовые альбомы масштабных изолюкс равной освещенности, которые в большинстве своем отсутствуют на предприятиях и стройках. Поэтому студенты используют расчетные методы (удельной мощности и точечный). Порядок расчета при этом следующий:
1. Начертить в масштабе рассматриваемую площадку.
2. Ориентировочно определить потребную удельную мощность, Вт. установки по формуле
wy=(0,15,..0,25) Emin*К . (2.1)
где К - коэффициент запаса, равный 1,5.
3. Подсчитать ориентировочное количество прожекторов, шт., по формуле
N = wу*S / Рл. (2.2)
4. Определить освещенность в контрольной точке (например, точка А на рис. 2.1 - менее освещенная, но равноудаленная от прожекторных мачт), которая освещается несколькими прожекторами, установленными на каждой мачте, с одинаковыми углами наклона q к горизонту и одинаковыми углами t между проекциями оптических осей смежных прожекторов на горизонтальную плоскость. Для этого замерить на чертеже расстояние l и определить отношение l/Н. Затем по графикам приведенной освещенности прожектора книги [1] на с. 249...286 определить оптимальный угол q подсчитать суммарную освещенность åe в точке А от прожекторов трех мачт, освещаемых эту точку. Сравнить суммарную освещенность с Еmin. Если åe³Еmin, то размещение мачт принимается с данной мощностью ламп в прожекторе; в противном случае необходимо принять ближайшую больжую мощность лампы в прожекторах.
5. Определить освещенность в дополнительной точке (например, точка Б на рис. 2.1), которая находится на половине расстояния между точкой А и любой из мачт. Нахождение в ней åe от трех прожекторных мачт осуществляется по методике, примененной для точки А, но с углом q , установленным для точки А.
-22-
Рис.2.1 Схема проекций краевых лучей на освещаемой площадке: t1, t2, t’3 и t”4 – углы между проекциями лучей прожекторов
- 23 -
Сравнить эту освещенность с освещенностью в точке А. Если åe в точке Б окажется меньше или больше в 1.5...2 раза, чем в точке А, то необходимо изменить дгол q - наклона прожектора и взять ближайшую кривую графика приведенной освещенности прожектора. Затем подсчитать åe при новом угле q в точке А и Б от трех прожекторных мачт по вышеизложенной методике и сравнитьих с Emin. И так действовать до тех пор, пока в точках А и Б не будет отличаться от Еmin и между собой более, чем в 1,5...2 раза.
6. Определить освещенность в точках угловых полей по вышепринятой методике с углом наклона прожектора q , полученным при определении åe в точке Б. Сравнить åe угловых точек с Emin.
7. Сопоставить åe угловых точек между собой. Если эти освещенности примерно равны (отличаются не более чем в 1,5...2 раза), то необходимо провести на чертеже границы действия пучка прожекторов каждой мачты (например, аналогично линиям 1-1' , 1-1". 2-2'. 2-2", 3-3' и 3-3" на рис. 2.1).
8. Принимая за расчетную åe точки А, определить угол, град, между проекциями оптических осей t для всех трех мачт по формуле
(2.3)
9. Определить число прожекторов в пучке по формуле
h = ( t/t/) + 1 , (2.4)
где t - угол между проекциями осей крайних прожекторов пучка, определенной зоной действия последнего (например, угла между линиями 1-1', l-l", 2-2'. 2-2". 3-3' и 3-3" рис. 2.1), град; t¢ - угол между проекциями крайних линий светового потока одного прожектора, град.
10. Подсчитать (путем суммирования) необходимое количество прожекторов на трех прожекторных мачтах.
При наличии одного прожектора на мачте методика расчета освещенности в заданной точке значительно упрощается (рис. 2.2). Например, дана точка и и ее расстояние l от основания вышки прожектора, а также расстояние от проекции оптической оси, перпендикулярной к линии, в. Студент определяет:
1) из треугольника OАА расстояние а по формуле
(2.5)
2) tg a1 = а / Н, а через tga1 находят по таблицам угол a1в градусах;
Рис. 2.2. К расчету освещенности от одного прожектора в данной точке
3) угол bг=arctg(b*cosa1) / Н; (2.6)
4) силу света Ja по графику, приведенному в книге [1] на с. 249...286;
5) горизонтальную освещенность Ег, лк, в данной точке по формвле
Ег = (Ja*cos3a) / Н² ; (2.7)
6) площадь изолюксы Sиз, м2, на поверхность площадки S, м², по графикам изолюкс на условной плоскости, приведенным в книге [1] на с. 249...286;
7) количество прожекторов. шт., по формуле
N=S/Sиз (2.8)
Независимо от количества прожекторов, установленных на мачте, студент находит "мертвое" пространство около каждой мачты (рис, 2.1) по формуле
Х = H*tg [90 – (q+a1)] + r / sinq (2.9)
где X - расстояние от прожекторной мачты до светового пятна на освещаемой поверхности площадки, м; q - принятый угол наклона прожектора, град; a1 - угол рассеяния (зависит от типа прожектора - см. табл. 9-6 книги [1]), град; R - радиус прожектора, м.
Если "мертвое" пространство находится на освещаемой площадке (как на рис. 2.3), то необходима остановка дополнительного источника света - светильника с лампой накаливания или ДРЛ. При этом высота его установки Н студент принимает равной 6,5...7.5 м (ЛН) или 7,0...11.5 м (ДРЛ), а Есв, создаваемая этим источником света в "мертвой" зоне, должна соответствовать освещенности на всей открытой площадке, т.е. Есв=Еmin = Ег. Величину Есв он находит по формулам:
или (2.10)
где J - сила света принятого источника света, кд (берут из книги [8] на с. 46 и 47); К - коэффициент запаса, равный 1,3 (ЛН) или 1,5 (ДРЛ).
На третьем этапе проектирования студент выполняет детальную конструктивную проработку второго этапа светотехнического расчета для заданной площадки в соответствии с указаниями подраздела 2.4.
Задания на расчет
Задание N2.2.1. Рассчитать методом удельной мощности и точечным методом для двух случаев (глубин и высот) количество прожекторов (на мачте установлено их несколько, т.е. пучек лучей) с ЛН или ДРЛ охранного освещения открытой производственной площадки по исходным данным табл. 2.1, разместить их на плане площадки и выбрать оптимальный вариант охранного освещения, удовлетворяющий данным условиям работы. При этом минимальную освещенность принять 2 лк. На площадке размещены временные подсобные помещения и будут проводиться работы по выполнению нулевого цикла (вариант 1...12) или строительству здания (вариант 13...25).
Задание N2.2.2. Рассчитать методом удельной мощности и точечным методом для двух случаев (высот и глубин) количество прожекторов (на мачте установлен один прожектор) с ЛН или ДРЛ охранного освещения открытой производственной площадки по исходным данным табл. 2.2, разместить их на плане площадки и
-26-
Рис. 2.3 Схема установки прожекторных мачт со светильниками по контуру производственной площадки: 1 – зона («мёртвое пространство»), освещаемая светильниками; 2 – зона, освещаемая прожекторами
27-
Таблица 2.1. Исходные данные к заданию N2.2.1
Вариант | Размер площадки. м | Тип,напряжение, В. и мощность лампы, Вт | Тип прожектора | Высота установки прожектора*, и | Вид выполняемых работ |
50 х 10 | Б 215-225-150 | ПЗС-25 | |||
75 х 10 100 х 10 150 х 10 | БК 215-225-150 Б 215-225-200 БК 215-225-200 | ПЗС-25 ПЗС-25 ПЗС-25 | 9,0 | Рытье траншей глубиной 1.7 и 2.0 м | |
175 х 10 | Г 215-225-300 | ПЗС-35 | |||
100 х 50 | БК 215-225-200 | ПЗС-25 | |||
8 9 | 125 х 50 150 х 50 175 х 50 | Б 215-225-150 БК 215-225-150 Г 215-225-300 | ПЗС-25 ПЗС-25 ПЗС-35 | 9.0 | Рытье котлованов глубиной 2.0 и 3.0 м |
200 х 50 | Б 215-225-200 | ПЗС-25 | |||
50 х 100 75 х 100 | Б 215-225-150 Г 215-225-300 | ПЗС-25 ПЗС-35 | 9.0 | Рытье котлованов глуби-ной 3,0:3,7 м | |
14 15 | 100 х 100 125 х 100 150 х 100 | ДРД - 80 ДРЛ - 125 ДРЛ - 250 | ПЗС-25 ПЗС-25 ПЗС-25 | 15,0 | Строительство зданий:крдгло-го h=12,0 м; прямоугольного 15 м |
100 х 30 | ДРЛ - 400 | ПЗС-35 | |||
125 х 30 150 х 30 175 х 30 | ДРЛ - 700 ДРЛ - 250 ДРЛ - 400 | ПЗС-35 ПЗС-25 ПЗС-35 | 21.0 | Строительство (панельного) здания h = 15.0 и 28,0 м | |
200 х 30 | ДРЛ - 700 | ПЗС-35 | |||
23 24 | 50 х 40 75 х 40 100 х 40 125 х 40 | ДРЛ - 1000 ДРЛ - 2000 Г 215-225-500 Г 215-225-750 | ПЗС-45 ПЗС-45 ПЗС-35 ПЗС-55 | 21.0 | Строительство кирпичного здания h = 28,0 м и Т-образного базара h = 12 м |
150 х 40 | Г 215-225-1000 | ПЗС-45 |
* Высота установки прожектора дана без учета высоты строящегося здания
-28 -
Таблица 2.2. Исходные данные к заданию N2.2.2
Вариант | Размер площадки, и | Тип,напряжение, В, и мощность, Вт | Тип прожектора | Высота установки прожектора*. И | Вид выполняемых работ |
100 х 50 125 х 50 150 х 50 175 х 50 200 х 50 | ДРЛ - 1000 ДРЛ - 2000 Г 215-225-500 Г 215-225-750 Г 215-225-1000 | ПЗС-45 ПЗС-45 ПЗС-35 ПЗС-35 ПЗС-45 | 15.0 | Строительство сборочного и холодно-прессового цехов высотой h = 15 и 18 м | |
50 х 100 | ДРЛ - 400 | ПЗС-35 | |||
75 х 100 100 х 100 125 х 100 | ДРЛ - 700 ДРЛ - 250 Г 215-225-300 | ПЗС-35 ПЗС-25 ПЗС-25 | 21.0 | Строительство корпусов института h = 18 и 21 м | |
150 х 100 | Г 215-225-750 | ПЗС-35 | |||
50 х 100 75 х 100 | ДРЛ - 1000 ДРЛ - 2000 | ПЗС-45 ПЗС-45 | 18.0 | Строительство Т-образного здания h=20 и | |
13 14 | 100 х 100 125 х 100 150 х 100 | ДРЛ - 700 ДРЛ - 400 Г 215-225-1000 | ПЗС-35 ПЗС-35 ПЗС-45 | 9.0 | Рытье котлованов под емкости глубиной 15 и 7.5 м |
100 х 30 | БК 215-225-200 | ПЗС-25 | |||
I7 | 125 х 30 150 х 30 | Б 215-225-150 БК 215-225-150 | ПЗС-25 ПЗС-25 | 9.0 | Рытье котлованов глубиной 4 и 6 м |
175 х 30 | Г 215-225-300 | ПЗС-25 | |||
200 х 30 | Б 215-225-200 | ПЗС-25 | |||
50 х 5 | Б 215-225-150 | ПЗС-25 | |||
75 х 5 100 х 5 | БК 215-225-150 Б 215-225-200 | ПЗС-25 ПЗС-25 | 10.0 | Рытье траншей глубиной 2,0 и 3.0 м | |
125 х 5 | БК 215-225-200 | ПЗС-25 | |||
150 х 5 | Г 215-225-300 | ПЗС-35 |
*Высота установки прожектора дана без учета высоты строящегося здания
- 29 -
выбрать оптимальный вариант охранного освещения, удовлетворяющий данным условиям работы. При этом минимальную освещенность принять 2 лк. На площадке размещены временные подсобные помещения и будут прводиться работы по строительству здания (вариант 1...12) или выполнению нулевого цикла (вариант 13...25).