Коагулирование и отстаивание воды
Для укрупнения мелкодисперсных и колохидных частиц с целью увеличения скорости их осаждения и способности задерживаться пористыми фильтрующими материалами применяют коагулирование.
Коллоидные частицы, обладая электрическим зарядом, взаимно отталкиваются, что препятствует их укрупнению. Для устранения этого препятствия в обрабатываемую воду, содержащую обычно отрицательно заряженные коллоидные частицы, вводят коагулянты, образующие положительно заряженные коллоиды. Взаимодействие тех и других коллоидных частиц приводит к нейтрализации их зарядов и образованию более крупных частиц в виде хлопьев. В качестве коагулянтов чаще всего применяют сернокислый алюминий (сернокислый глинозем), сернокислое железо закисное (железный купорос), сернокислое железо окисное, хлорное железо.
В результате гидролиза этих солей образуются гидраты окисей алюминия или железа, представляющие собой обычно положительно заряженные коллоиды. Образующиеся при гидролизе водородные ионы связываются присутствующими в воде бикарбонатными ионами. Если содержащихся в воде бикарбонатных ионов недостаточно, то для связывания выделяющихся при коагуляции ионов водорода к воде добавляют известь, соду или едкий натр. Доза коагулянта за-ппсит от мутности и цветности воды и для природных вод обычно составляет примерно 20—50 мг/л.
Реагентное хозяйство. Наибольшее распространение имеет мокрый способ дозирования реагентов. При этом способе комья коа-i улянта загружают в растворный бак 1 с водой (рис. II.47), откуда после растворения коагулянт поступает в расходные баки 2, в которых приготовляется раствор определенной концентрации. Этот раствор направляется в дозировочный бачок 3, а из него подается и обрабатываемую волу. Обычно устанавливают два растворных бака, работающих попеременно.
Для ускорения процесса растворения коагулянта в растворный бак подают сжатый воздух пли пар или же применяют механические мешалки.
Для ускорения процесса коагуляции в воду вводят флокулян-ты — полиакриламид или активную кремнекислоту.
Смесители. Для равномерного перемешивания коагулянта со всей массой воды служат смесители. Наибольшее распространение получили перегородчатые, дырчатые и вихревые смесители.
Перегородчатый смеситель — это лоток с тремя вертикальными поперечными перегородками, имеющими попеременно центральные и боковые проходы. Перемешивание коагулянта с водой происходит в результате интенсивных завихрений потока.
В дырчатом смесителе перемешивание осуществляется под воздействием завихрений, образующихся при проходе воды через отверстия в поперечных перегородках.
В вертикальном (вихревом) смесителе перемешивание осуществляется вследствие турбулизации вертикального потока. Смеситель может быть квадратного или круглого сечения в плане с пирамидальной или конической нижней частью
Рис. II.47. Устройство для приготовления раствора реагентов
Рис. II.48. Перегородчатая камера хлопьеобра-зования
Допускается смешивать реагенты с водой в трубопроводах и насосах, подающих воду на очистные сооружения.
Камеры хлопьеобразования. В этих камерах происходит образование хлопьев в процессе плавного перемешивания обрабатываемой воды с раствором коагулянта. Вода в камере в течение 10— 40 мин постепенно перемещается от места впуска до выпуска. Скорость движения воды в камере должна быть такой, чтобы хлопья в ней не выпадали и не разбивались. Камеры хлопьеобразования бывают перегородчатые, лопастные, вихревые и др.
Перегородчатая камера (рис. II.48) представляет собой железобетонный резервуар, разделенный продольными перегородками на коридоры. Вода проходит по этим коридорам со скоростью 0,2—0,3 м/с. Число рабочих коридоров может меняться в зависимости от мутности воды.
Лопастные камеры хлопьеобразования могут быть с вертикальным и горизонтальным расположением вала мешалок. В одной камере располагаются две или несколько мешалок. Каждая мешалка имеет от двух до шести лопастей. Вода в камерах находится в течение 20—30 мин, двигаясь со скоростью 0,2—0,5 м/с.
Вихревая камера хлопьеобразования представляет собой расширяющийся кверху конический или пирамидальный резервуар, в который вода поступает снизу. В результате движения воды с уменьшающейся скоростью боковые слои воды подсасываются в основной поток, что способствует хорошему ее перемешиванию.
Отстойники. Процесс отстаивания основан на том, что при малых скоростях движения воды взвешенные в ней частицы под действием силы тяжести осаждаются на дно. Скорость осаждения частиц зависит от их размеров, формы, удельного веса и температуры воды.
Источники водоснабжения характеризуются различным содержанием в воде взвешенных частиц, т. е. имеют разную мутность. В спязи с этим продолжительность отстаивания воды будет различной.
Осветляемая вода может двигаться в отстойнике в горизонтальном, вертикальном или радиальном направлении. В зависимости от направления потока различают отстойники горизонтальные, вертикальные и радиальные.
Горизонтальные отстойники применяют на очистных станциях производительностью более 30 000 м3/сут.
Рис. 11.49. Горизонтальный отстойник
В горизонтальном отстойнике (рис. 11.49), представляющем собой прямоугольный резервуар, вода поступает с торца и движется вдоль длинной стороны резервуара.
Относительно равномерное движение воды по всему поперечному сечению отстойника достигается устройством дырчатых перегородок, водосливов, распределительных и сборных желобов.
Для равномерного отвода воды из отстойника на расстоянии 1—■ 2 м перед задней торцовой стенкой устанавливают дырчатую перегородку. Нижнюю часть перегородки на 0,3—0,5 м выше зоны накопления и уплотнения осадка делают сплошной (без отверстий).
Глубина зоны осаждения принимается равной 2,5—3,5 м, а ширина секции отстойника — не более 6 м.
Днище горизонтальных отстойников имеет уклон к приямку для осадка, расположенному в начале отстойника. Осадок, накапливающийся в отстойнике, периодически удаляют механизированным или гидравлическим способом.
При горизонтальных отстойниках следует предусматривать камеры хлопьеобразования перегородчатого или вертикального типа со слоем взвешенного осадка или без него.
В последние годы находят распространение горизонтальные отстойники с рассредоточенным по площади сбором воды через затопленные отверстия.
Вертикальные отстойники, устраиваемые на малых очистных станциях производительностью до 3000 м3/сут, представляют собой круглый или квадратный в плане резервуар с коническим или пирамидальным днищем с углом наклона стенок 50—70°. Вода поступает по трубопроводу в центральную трубу, опускается в нижнюю часть отстойника, затем поднимается в его рабочей части и переливается через водослив в круговой лоток. Иногда вместо центральной трубы устраивают камеру хлопьеобразования водоворотного типа (рис. 11.50). В эту камеру вода поступает через сопла, из которых она выходит по касательной, создавая вращательное движение в камере. В нижней части камеры устанавливают решетки из щитов для гашения вращательного движения воды.
Рис. II.50. Вертикальный отстойник
Осветление происходит при условии, что скорость восходящего потока воды меньше скорости осаждения взвешенных частиц. Тогда эти частицы выпадают на дно. Осадок периодически удаляется самотеком по иловой трубе без прекращения работы отстойника.
Скорость восходящего потока воды v принимают в пределах 0,5— 0,75 мм/с. Диаметр отстойника не должен превышать 10 м, а отношение диаметра вертикального остойника к высоте зоны осаждения должно быть не больше 1,5. Если диаметр отстойника превышает 4 м, то кроме кругового лотка устраивают радиальные желоба.
Число отстойников на очистной станции должно быть не менее Двух.
Площадь поперечного сечения вертикального отстойника слагается из площади зоны осаждения и площади камеры хлопьеобразования.
Площадь камеры хлопьеобразования определяется из расчета пребывания воды в ней в течение 15—20 мин. Высота камеры назначается в пределах 3,5—4,5 м.
Радиальные отстойники применяют преимущественно в промышленных системах водоснабжения на очистных станциях большой производительности при высоком содержании в воде взвешенных частиц. В этих отстойниках вода подается в центр, а затем движется в радиальном направлении и сливается в периферийный сборный желоб, из которого отводится по трубе. Как и в отстойниках других типов осветление здесь происходит вследствие создания малых скоростей движения, при которых взвешенные частицы выпадают на дно.
Радиальные отстойники имеют диаметр 20—60 м, глубину 3— 5 м в центре и 1,5—3 м на периферии.
Преимущество этих отстойников состоит в том, что их конструкция позволяет осуществлять постоянное удаление осадка механизированным способом без прекращения работы отстойников.
Осветлители. Условия осветления воды значительно улучшаются при пропуске ее через слой взвешенного осадка. Частицы взвешенного осадка способствуют большему укрупнению хлопьев коагулянта. Крупные хлопья могут задержать больше взвешенных частиц, содержащихся в осветляемой воде.
На этом приципе работают сооружения, называемые осветлителями со взвешенным осадком.
Осветлители при равных объемах имеют более высокую производительность, чем отстойники, и требуют меньшего расхода коагулянта.
Для удаления воздуха, пузырьки которого могут взмучивать взвешенный осадок в осветлителе, воду предварительно направляют в воздухоотделитель.
Рис. II.51. Осветлитель коридорного типа
Осветлитель коридорного типа (рис. II.51) представляет собой прямоугольный резервуар. Коагулированная вода поступает в осветлитель по трубе 9 и через дырчатые трубы / распределяется в нижней (рабочей) части 2 осветлителя. Скорость движения воды в рабочей части должна быть такой, чтобы хлопья коагулянта находились во взвешенном состоянии. Этот взвешенный слой способствует задержанию взвешенных частиц. Степень осветления воды при этом значительно больше, чем в обычном отстойнике. Выше рабочей части находится защитная зона 3, где взвешенного слоя нет. Осветленная вода отводится по лоткам 4 и трубе 10 для последующей обработки. Избыточное количество осадка подсасывается трубой 5 через окна 6 в осадкоуплотнитель 7, откуда уплотненный осадок периодически или непрерывно сбрасывается в канализацию по трубам 8.
Скорость восходящего потока в рабочей части осветлителя принимают в пределах 1 —1,2 мм/с.
Высота слоя взвешенного осадка составляет 2—2,5 м, а высота зоны осветления 1,5—2 м. Время уплотнения осадка в осадкоуплотнителе от 3 до 12 ч.
ФИЛЬТРОВАНИЕ ВОДЫ
Обычно после осветления воды в отстойниках или осветлителях ее фильтруют. Для фильтрования воду пропускают через слой мелкозернистого фильтрующего материала, задерживающего содержащиеся в ней частицы мелкой взвеси. В качестве фильтрующего материала применяют кварцевый песок, гравий, дробленый антрацит и другие материалы.
Различают скорые, сверхскоростные и медленные фильтры. Скорые фильтры применяют при коагулировании воды, медленные — при обработке воды без коагулирования, сверхскоростные могут работать с коагулированием воды и без него.
Фильтры бывают о т к р ы т ы е (безнапорные) и напорные (закрытые). Скорые фильтры чаще всего бывают открытые, сверхскоростные всегда напорные, медленные всегда открытые. Движение воды через безнапорные, или самотечные фильтры, заполненные до определенной отметки фильтрующей загрузкой, происходит под напором, создаваемым разностью отметок уровней воды в фильтре и на выходе из него. Движение воды через слой фильтрующей загрузки напорных фильтров происходит под напором, создаваемым насосами.
Скорые фильтры. Скорый фильтр представляет собой загруженный фильтрующим материалом резервуар, снабженный устройствами для подачи воды, сбора профильтрованной воды и промывки загрузки.
Необходимость в промывке загрузки объясняется тем, что в процессе работы фильтр постепенно засоряется и его гидравлическое сопротивление увеличивается. Промывку производят чистой водой в направлении снизу вверх. Частота промывки фильтра зависит от качества сырой воды и обычно не превышает 1—2 раз в сутки.
По конструкции различают открытые скорые фильтры однопоточные сдвижением воды только сверху вниз и двухпоточные — С одновременным движением воды сверху вниз и снизу вверх. Однопоточные фильтры могут иметь загрузку из однородного фильтрующего материала или из различных материалов — двух- или многослойные фильтры.
Выбор той или иной системы фильтров определяется технологическими и технико-экономическими показателями.
Рис. II.52. Однопоточный открытый скорый фильтр
В однопоточных открытых скорых фильтрах (рис. II.52) коагулированная и осветленная вода подается по трубопроводу 3 в карман 2. Проходя фильтрующую загрузку 10 и поддерживающий гра-виЙНЫЙ слой 9, вода через дырчатое днище 5 поступает в дренаж #, откуда по трубопроводу 6 направляется в резервуар чистой воды. Труба 7 служит для опорожнения фильтра на время его ремонта. 11ромывная вода при промывке подается по трубопроводу 6, проходит поддерживающий гравийный слой 9 и фильтрующую загрузку 10 и сбрасывается в промывные желоба /. Затем загрязненная промывная вода по трубопроводу 4 направляется в водосток.
Толщина фильтрующей загрузки зависит от крупности слагающих ее зерен песка и принимается в пределах 0,7—2 м. При этом расчетные скорости фильтрования при нормальном режиме составляют 5,5—10 м/ч.
В последние годы стали применять двухслойные фильтры, загружаемые сверху на высоту 400—500 мм дробленым антрацитом, а ниже на высоту 600—700 мм кварцевым песком. Такие фильтры обладают большей грязеемкостью, чем фильтры, загруженные только песком. Производительность двухслойного фильтра почти в 2 раза больше производительности однослойного.
11оддерживающий гравийный слой устраивают высотой 650мм из чагпщ крупностью от 2 до 40 мм. Крупность загрузки увеличивается сверху вниз. Гравийный слой служит для предотвращения вымывания фильтрующего материала.
Назначение дренажа — равномерное отведение профильтрованной воды. Различают дренажи большого и малого сопротивления. Последние в настоящее время почти не применяются. Дренажи большого сопротивления бывают трубчатые и колпачковые. В последнее время широкое распространение получили также щелевые дренажи.
Они позволяют отказаться от гравийного поддерживающего слоя и тем самым уменьшить высоту фильтра.
Промывку фильтров проводят со скоростью, в 7—10 раз большей скорости фильтрования. Продолжительность промывки 5—8 мин.
Рис. II.53. Двухпоточный открытый скорый фильтр
В двухпоточных открытых скорых фильтрах (рис, II.53) основная масса воды проходит через фильтрующий материал снизу вверх, а часть воды, поступающей по трубе 3, карману 2 и желобу 1, фильтруется сверху вниз. Профильтровавшаяся вода отводится трубчатым дренажем 5, устраиваемым из щелевых асбесто-цементных или винипластовых труб.
Дренажная система располагается в толще фильтрующего слоя на расстоянии 500—600 мм от поверхности загрузки.
Промывная вода подается в дренаж 5для взрыхления верхнего слоя песка. Интенсивность подачи воды 6—8 л/ (с • м2). Затем промывная вода подается в распределительную систему 6 для промывки всего слоя загрузки. Интенсивность подачи воды 10—15 л/ (с-м2). Загрязненная вода через желоб 1, карман 2 и трубу 4 сбрасывается в водосток.
Скорость фильтрования в двухпоточных фильтрах 12 м/ч.
Крупнозернистые скорые фильтры применяют для частичного осветления воды, используемой для технических целей на промышленных предприятиях. Эти фильтры бывают напорные и открытые. Для загрузки фильтров чаще всего применяю! кварцевый песок крупностью 1—2,5 мм. Высота слоя загрузки 1,5—3 м. Скорость фильтрования 10—15 м/ч. Промывку крупнозернистых фильтров производят водой и воздухом в такой последовательности: 1) взрыхление фильтрующей загрузки водой; 2) водовоздушная промывка; 3) отмывка водой. Интенсивность промывки водой 6—8 л/ (с • м2), воздухом — 15—25 л/ (с* м2).
Сверхскоростные фильтры по конструкции бывают вертикальные и горизонтальные. Поддерживающий гравийный слой в этих фильтрах не устраивают. В нижней части фильтра располагают трубы для промывки и продувки его воздухом. Наибольшее распространение получили вертикальные фильтры. Скорости фильтрования в таких фильтрах 25—100 м/ч. Применяют их для частичного осветления воды. Работа фильтров, регулирование скорости фильтрования и промывка фильтров автоматизированы. Для очистных станций большой производительности применяют горизонтальные фильтры, имеющие большую площадь фильтрования по сравнению с вертикальными. Потери напора в фильтрах достигают 10 м.
Медленные фильтры. Медленные фильтры применяют на очистных станциях малой производительности. По способу регенерации загрузки эти фильтры бывают двух типов; 1) с удалением загрязненного слоя, 2) с отмывкой загрязненного слоя непосредственно в фильтре путем механического рыхления слоя и гидравлического удаления загрязнений. Высоту слоя загрузки песка крупностью 0,3—2 мм принимают равной 850 мм и гравия крупностью 2— 40 мм — равной 450 мм. При регенерации с отмывкой загрузки непосредственно в фильтре ширина секции фильтров должна быть не более 6 м, длина — не более 60 м. Слой воды над поверхностью загрузки рарен 1,5 м. Скорость фильтрования для медленных фильтров составляет 0,1—0,2 м/ч.
Контактные осветлители представляют собой сооружения комбинированного типа. В них совмещаются процессы хлопьеобразо-вания, отстаивания и фильтрования. Это позволяет значительно уменьшить объем сооружений. Принцип работы контактного осветлителя состоит в том, что при фильтровании воды через слой зернистой загрузки на поверхности слагающих ее зерен сорбируются взвешенные и коллоидные частицы.
Движение воды в контактных осветлителях происходит снизу вверх. Скорость фильтрования 4—5 м/ч. Для загрузки осветлителей применяют гравий и кварцевый песок. Гравийный поддерживающий слой имеет крупность зерен 2—32 мм и высоту 350—500 мм. Высота фильтрующего слоя песка 2000—2300 мм при эквивалентном диаметре зерен 0,7—2 мм.
Загрузку промывают восходящим потоком воды и воздуха. Для равномерного распределения воды и воздуха применяют трубчатую распределительную систему большого сопротивления с поддерживающим гравийным слоем или без него. Режим водовоздуш-ной промывки назначают следующий: 1) продувка 1 —1,5 мин; 2) совместная промывка водой и воздухом в течение 6—7 мин с интенсивностью подачи воды 2—3 л/ (с • м2); 3) последующая промывка водой с интенсивностью 6—7 л/ (с • м2) в течение 4—6 мин.
Контактные осветлители могут работать с постоянной скоростью фильтрования в период рабочего цикла и с переменной скоростью, убывающей к концу Цикла.
ОБЕЗЗАРАЖИВАНИЕ ВОДЫ
Вода поверхностных источников, как правило, содержит болезнетворные бактерии. В результате отстаивания и фильтрования из воды удаляется до 95% бактерий. Для уничтожения оставшихся бактерий воду обеззараживают. С этой целью используют жидкий хлор, гипохлорит натрия, растворы гипохлоритов, полученные электролитическим путем, озон, двуокись хлора и бактерицидное облучение. Воду в хозяйственно-питьевых водопроводах, питающихся из подземных источников, обеззараживают в случае возможного попадания в эти источники болезнетворных бактерий.
Хлорирование. Наиболее распространенным методом обеззараживания является хлорирование. Для хлорирования используют хлорную известь или газообразный хлор.
Хлорную известь применяют при малых расходах воды. При введении в воду хлорная известь распадается на гипохлорит кальция и хлористый кальций. Гипохлорит кальция реагирует с углекислотой или бикарбонатами кальция, находящимися в воде, образуя хлорноватистую кислоту, которая легко распадается с образованием атомарного кислорода, оказывающего бактерицидное действие. При введении в воду газообразного хлора образуются хлорноватистая и соляная кислоты. Хлорноватистая кислота распадается с выделением атомарного кислорода. Необходимый эффект хлорирования достигается в результате хорошего перемешивания и 30-минутного контакта хлора с водой. Такой контакт происходит в контактном резервуаре или в трубопроводе, подающем воду потребителям.
Вода, поступающая к потребителям, должна содержать в I л 0,3—0,5 мг хлора (так называемый остаточный хлор), что свидетельствует о достаточности введенной дозы хлора для полного обеззараживания воды. На 1 л фильтрованной воды вводят 2—3 мг хлора, а на 1 л нефильтрованной речной воды — до 6 мг хлора.
Обычно применяют двойное хлорирование, добавляя хлор перед отстаиванием и после фильтрования.
Для дозирования хлора служат хлораторы. По принципу работы их делят на вакуумные и напорные. Напорные хлораторы имеют тот недостаток, что в них газообразный хлор находится под давлением выше атмосферного и поэтому возможны утечки газа, который очень ядовит. Вакуумные хлораторы не имеют этого недостатка.
Хлор доставляют на станцию в сжиженном виде в баллонах. Из этих баллонов хлор переливают в промежуточный баллон, где он переходит в газообразное состояние. Газ поступает в хлоратор. Здесь он растворяется в водопроводной воде, образуя хлорную воду, которая вводится в трубопровод, транспортирующий воду, предназначенную для хлорирования.
При повышении дозы хлора в воде остается неприятный запах. Такую воду необходимо дехлорировать. Для предотвращения образования хлорфенольного запаха на станциях в воду подают газообразный аммиак.
Для приготовления гипохлорита натрия электролитическим способом непосредственно на очистных сооружениях служат электролизеры с графитовыми пластинчатыми или засыпными магнетито-выми электродами. Электролизеры должны располагаться в изолированном помещении.
Озонирование. Сущность процесса обеззараживания воды озоном заключается в окислении бактерий атомарным кислородом, образующимся при распаде озона. Озон одновременно уменьшает цветность, запахи и привкусы воды.
Для обеззараживания 1 л воды подземных источников требуется 0,75—-1 мг озона, а" 1 л фильтрованной воды поверхностных источников 1—3 мг озона
Озон в виде озоно-воздушной смеси получают в электрических озонаторах из кислорода воздуха. В состав озонаторной установки входят сооружения для синтеза озона и для смешения озона с водой. Подготовка воздуха для синтеза состоит в задержании взвешенных частиц на фильтре, осушке воздуха в адсорберах с силика-гелем или алюмогелем. Подготовленный воздух направляется в озонаторы.
Перемешивание полученной озоно-воздушной смеси с водой производится барботированием в колоннах, резервуарах- Применяют для этого также эжекторы-смесители и механические мешалки.
Бактерицидное облучение. Этот метод обеззараживания воды осуществляется с использованием ультрафиолетовых лучей, обладающих бактерицидными свойствами. Применяют его для обеззараживания небольших расходов воды подземных источников, а также фильтрованной воды поверхностных источников. В качестве источников излучения служат ртутно-кварцевые лампы высокого или низкого давления.
Эффект обеззараживания зависит от продолжительности и интенсивности излучения. Различают напорные бактерицидные установки, располагаемые на напорных или всасывающих трубопроводах, и безнапорные, устанавливаемые на горизонтальных трубопроводах или в специальных каналах.
Обеззараживание ультрафиолетовыми лучами не применяется для вод высокой мутности.
СПЕЦИАЛЬНАЯ ОБРАБОТКА ВОДЫ
В зависимости от свойств воды источника водоснабжения или от требований, предъявляемых потребителями к качеству воды, может потребоваться специальная ее обработка — умягчение, обезжелезивание, стабилизация, обессоливание, охлаждение и т. п.
Умягчение воды, предназначенной для хозяйственно-питьевых целей, обычно не производят. Однако оно необходимо для некоторых технологических процессов на промышленных предприятиях. Так, для отдельных производств текстильной, химической и пищевой отраслей промышленности требуется вода с жесткостью не более 1 мг-экв/л. Питательная вода для котлов среднего и высокого давления должна иметь жесткость не более 0,3 мг-экв/л.
Рис. 11.54. Установка для умягчения воды известково-содовым методом/—3 — растворные бачки; 4—6 — дозирующие бачки; 7 — смеситель; 8 — камера хлопъеобразования; 9 — воздухоотделитель; 10 — осветлитель; /; — фильтр; 12 — резервуар; 13 — насос
Рис. 11.55. Установка для Na- катионирования
Различают методы реагентного и катионитового умягчения воды, а также комбинированные методы.
Из методов реагентного умягчения наиболее распространен известково-содовый, при котором в воду добавляют известь для снятия временной (карбонатной) жесткости и кальцинированную соду для удаления постоянной (некарбонатной) жесткости. При введении в воду указанных реагентов образуются нерастворимые соединения, выпадающие в осадок, или соединения, сохраняющиеся в воде, но не обладающие свойствами солей жесткости.
После умягчения воду осветляют в отстойниках или осветлителях. Иногда для ускорения процесса осветления производят коагулирование воды, железным купоросом.
На рис. П. 54 приведена схема установки для умягчения воды известково-содовым методом.
При известково-содовом умягчении воды обычно применяют камеры хлопьеобразования вихревого типа.
Метод катионитового умягчения основывается на способности катионитов обменивать катионы натрия или водорода на катионы солей жесткости, содержащихся в воде. Умягчающую способность катионитов называют обменной способностью или емкостью поглощения.
В результате обменной реакции катионы солей жесткости переходят в состав катионита, а в воду переходят катионы натрия, образуя натриевые соли. Такое умягчение называют Na-катионирова-нием. При Н-катионировании в обменную реакцию с катионами магния и кальция вступают катионы водорода.
При работе установки катионит расходует катионы Na или Н и теряет способность умягчать воду. В связи с этим необходима периодическая регенерация катионитового фильтра. Для восстановления катионов натрия через фильтр пропускают раствор поваренной соли, а для восстановления катионов водорода — раствор серной кислоты.
После Н-катионирования увеличивается кислотность воды, а после Na-катионирования вода приобретает повышенную щелочность. Применяя H-Na-катионирование, умягченную воду не нужно ни подщелачивать, ни подкислять.
На рис. П. 55 приведена схема установки для Na-катионирования. В напорный фильтр, загруженный катионитом, по трубе 1 вводится вода для умягчения. Вода проходит через катионит сверху вниз и отводится по трубопроводу 3. Для промывки загрузки фильтра через его дренажную систему подается вода из промывного бака 2. Продолжительность промывки 10—15 мин. Промывная вода сбрасывается по трубе 1. Для регенерации катионита в фильтр вводят раствор соли. Солевой раствор из фильтра уходит по трубе 4. Затем фильтр должен быть отмыт от солевого раствора. Для этого по трубе / подают сырую воду, котораяпроходит фильтр и сбрасывается по трубе 4. Часть этой воды направляется в промывной бак.
Обезжелезивание воды. Содержание железа в питьевой воде не должно превышать 0,3 мг/л На предприятиях ряда отраслей промышленности, например текстильной, содержание железа в воде, используемой для технологических нужд, не должно превышать 0,1—0,2 мг/л.
Обезжелезивание воды поверхностных источников проводится путем аэрации, введения реагентов-окислителей с аэрацией или без нее и путем катионирования. Одновременно происходит ее осветление и обесцвечивание.
Установка обезжелезивания методом аэрации состоит из аэрационного устройства, контактного резервуара и фильтра.
В аэрационном устройстве вода насыщается кислородом, частично удаляется углекислота, двухвалентное железо окисляется до трехвалентного. В контактном резервуаре завершается окисление двухвалентного железа и образуется осадок гидрата окиси железа. Фильтры служат для извлечения из воды гидрата окиси железа. Аэрация воды может осуществляться следующими способами: нагнетанием воздуха через дырчатые трубы или пористые пластины; подачей воздуха во всасывающий патрубок насоса; разбрызгиванием воды; пропуском воды через контактные или вентиляторные градирни. Наиболее распространены контактные градирни.
Установка для реагентного (с помощью коагулирования и известкования) обезжелезивания воды состоит из устройств для растворения и дозирования реагента, аэратора-смесителя, осветлителя и фильтра. Аэратор-смеситель обычно совмещается с осветлителем и располагается над ним. Он представляет собой систему дырчатых днищ, расположенных одно над другим
Обезжелезивание катионированием .производят на ка-тионитовых фильтрах, загруженных сульфоуглем Фильтр регенерируют раствором поваренной соли.
Стабилизация воды заключается в придании ей свойств, при которых она теряет способность вызывать коррозию и откладывать соли, препятствует биологическому обрастанию.
Стабилизация воды необходима в промышленных системах оборотного водоснабжения, когда из-за испарения воды в охладительных сооружениях в ней повышается концентрация солей. Стабилизация воды в таких системах'предотвращает образование накипи и развитие коррозии в теплообменных аппаратах и охладительных устройствах.
Для стабилизации воды применяют подкисление, рекарбонизацию и фосфатирование. Подкисление воды заключается в добавке в нее соляной или серной кислоты. При рекарбонизации в воду вводят углекислоту для стабилизации содержащихся в пей карбонатов. Для этого обычно используют дымовые газы, в состав которых входит углекислота. При фосфатировании в воду добавляют фосфаты (гексаметафосфат натрия, тринатрийфосфат и суперфосфат). Фосфаты препятствуют образованию отложений в трубопроводах и, кроме того, образуют на поверхности металла пленку, которая предотвращает развитие коррозии.
Для борьбы с биологическим обрастанием трубопроводов и оборудования в системах оборотного водоснабжения периодически применяют купоросование или хлорирование воды.
Обессоливание воды заключается в удалении из нее растворенных солей. Полное обессоливание необходимо, например, при подготовке питательной воды для котлов высокого давления. Частичное удаление растворенных солей называется опреснением.
Опреснение вод с солесодержанием до 2—3 г/л производится при помощи ионного обмена, вод с солесодержанием 3—15 г/л г—методом электродиализа или гиперфильтрации и вод с солесодержанием более 10 г/л — путем замораживания, дистилляции или гиперфильтрации.
Ионный обмен применяют для опреснения или обессоливания воды при количестве взвешенных частиц в ней не более 8 мг/л и цветности ее не более 8°. Опреснение воды путем ионного обмена обычно проводится по одноступенчатой схеме фильтрованием через катио-нит и слабоосновный анионит. Предусматривается удаление углекислоты из фильтрата катионитовых фильтров. Применяют также двух- и трехступенчатые схемы.
Охлаждение воды. В системах промышленного водоснабжения для охлаждения воды применяют охладительные пруды, брызгаль-ные бассейны и градирни.
Охладительные пруды представляют собой искусственные водоемы, в хвостовую часть которых сбрасывают нагревшуюся воду, а из головной части которых забирают охлажденную воду. Охлаждение воды происходит вследствие ее испарения с поверхности и конвекции. Охладительный эффект пруда зависит от температуры наружного воздуха, силы и направления ветра. Для охлаждения 1 м3 воды необходима площадь пруда 15—40 м2. К недостаткам прудов относятся зарастание их в результате интенсивного развития водных организмов и минерализация воды. В связи с этим пруды обычно устраивают только в тех случаях, когда необходимо регулирование водного стока.
Брызгальные бассейны выполняют в виде прямоугольных водонепроницаемых резервуаров глубиной до 1,5 м. Нагревшуюся воду разбрызгивают по поверхности воды с помощью брызгал. При разбрызгивании воды происходит ее охлаждение.
Градирни бывают капельными и пленочными.
Наиболее распространены градирни капельные башенного типа. Нагревающуюся воду подают в верхнюю часть башни и по желобам разводят по всей ее площади. Ороситель представляет собой систему деревянных реек. Вода из желобов падает на розетки, разбрызгивается и стекает вниз. Холодный воздух поступает через окна в нижней части оросителя и поднимается вверх, охлаждая воду. Общая высота градирен составляет 30—80 м. Охлажденная вода собирается под градирней. Площадь оросителя, необходимая для охлаждения 1 м3 воды, составляет 0,25 — 0,3 м2. В пленочных градирнях вода обтекает тонкой пленкой большие поверхности оросителя.
Применяют также градирни с искусственной подачей воздуха вентиляторами. В этом случае вытяжная башня не устраивается.
Градирни выполняют из дерева или железобетона.
Раздел III. КАНАЛИЗАЦИЯ