| Коммутация тока в цепи электромагнитными пускателями, контакторами, реле, аппаратами ручного управления (рубильниками, пакетными выключателями, переключателями, кнопками и т. д.) осуществляется изменением в широких пределах электрического сопротивления коммутирующего органа. В контактных аппаратах таким органом является межконтактный промежуток. Его сопротивление при замкнутых контактах очень мало, при разомкнутых может быть очень высоким. В режиме коммутации цепи происходит очень быстрое скачкообразное изменение сопротивления меж контактного промежутка от минимальных до максимальных предельных значений (отключение), или наоборот (включение). Бесконтактными электрическими аппаратами называют устройства, предназначенные для включения и отключения (коммутации) электрических цепей без физического разрыва самой цепи. Основой для построения бесконтактных аппаратов служат различные элементы с нелинейным электрическим сопротивлением, величина которого изменяется в достаточно широких пределах, в настоящее время это - тиристоры и транзисторы, раньше использовались магнитные усилители. Достоинства и недостатки бесконтактных аппаратов по сравнению с обычными пускателями и контакторами По сравнению с контактными аппаратами бесконтактные имеют преимущества: - не образуется электрическая дуга, оказывающая разрушительное воздействие на детали аппарата; время срабатывания может достигать небольших величин, поэтому они допускают большую частоту срабатываний (сотни тысяч срабатываний в час), - не изнашиваются механически, В то же время, у бесконтактных аппаратов есть и недостатки: - они не обеспечивают гальваническую развязку в цепи и не создают видимого разрыва в ней, что важно с точки зрения техники безопасности; - глубина коммутации на несколько порядков меньше контактных аппаратов, - габариты, вес и стоимость на сопоставимые технические параметры выше. Бесконтактные аппараты, построенные на полупроводниковых элементах, весьма чувствительны к перенапряжениям и сверхтокам. Чем больше номинальный ток элемента, тем ниже обратное напряжение, которое способен выдержать этот элемент в непроводящем состоянии. Для элементов, рассчитанных на токи в сотни ампер, это напряжение измеряется несколькими сотнями вольт. Возможности контактных аппаратов в этом отношении неограниченны: воздушный промежуток между контактами протяженностью 1 см способен выдержать напряжение до 30 000 В. Полупроводниковые элементы допускают лишь кратковременную перегрузку током: в течение десятых долей секунды по ним может протекать ток порядка десятикратного по отношению к номинальному. Контактные аппараты способны выдерживать стократные перегрузки током в течение указанных отрезков времени. Падение напряжения на полупроводниковом элементе в проводящем состоянии при номинальном токе примерно в 50 раз больше, чем в обычных контактах. Это определяет большие тепловые потери в полупроводниковом элементе в режиме длительного тока и необходимость в специальных охлаждающих устройствах. Все это говорит о том, что вопрос о выборе контактного или бесконтактного аппарата определяется заданными условиями работы. При небольших коммутируемых токах и невысоких напряжениях использование бесконтактных аппаратов может оказаться более, целесообразным, чем контактных. Бесконтактные аппараты нельзя заменить контактными в условиях большой частоты срабатываний и большого быстродействия. Безусловно, бесконтактные аппараты даже при больших токах предпочтительны, когда требуется обеспечить усилительный режим управления цепью. Но в настоящее время контактные аппараты имеют оределенные преимущества перед бесконтактными, если при относительно больших токах и напряжениях требуется обеспечивать коммутационный режим, т. е. простое отключение и включение цепей с током при небольшой частоте срабатываний аппарата. Существенным недостатком элементов электромагнитной аппаратуры, коммутирующих электрические цепи, является низкая надежность контактов. Коммутация больших значений тока связана с возникновением электрической дуги между контактами в момент размыкания, которая вызывает их нагрев, оплавление и, как следствие, выход аппарата из строя. В установках с частым включением и отключением силовых цепей ненадежная работа контактов коммутирующих аппаратов отрицательно сказывается на работоспособности и производительности всей установки. Бесконтактные электрические коммутирующие аппараты лишены указанных недостатков. Тиристорный однополюсный контактор Для включения контактора и подачи напряжения на нагрузку должны замкнуться контакты К в цепи управления тиристоров VS1 и VS2. Если в этот момент на зажиме 1 положительный потенциал (положительная полуволна синусоиды переменного тока), то на управляющий электрод тиристора VS1 будет подано через резистор R1 и диод VD1 положительное напряжение. Тиристор VS1 откроется, и через нагрузку Rн пойдет ток. При смене полярности напряжения сети откроется тиристор VS2, таким образом, нагрузка будет подключена к сети переменного тока. При отключении контактами К размыкаются цепи управляющих электродов, тиристоры закрываются и нагрузка отключается от сети. Схема электрическая однополюсного контактора Бесконтактные тиристорные пускатели Для включения, отключения, реверсирования в схемах управления асинхронными электродвигателями разработаны тиристорные трехполюсные пускатели серии ПТ. Пускатель трехполюсного исполнения в схеме имеет шесть тиристоров VS1, …, VS6, включенных по два тиристора на каждый полюс. Включение пускателя осуществляется посредством кнопок управления SB1 «Пуск» и SB2 «Стоп». Бесконтактный трехполюсный пускатель на тиристорах серии ПТ Схема тиристорного пускателя предусматривает защиту электродвигателя от перегрузки, для этого в силовую часть схемы установлены трансформаторы тока ТА1 и ТА2, вторичные обмотки которых включены в блок управления тиристорами. |