Основные свойства взвешенных частиц

Способы образования и анализ свойств частиц подроб­но рассмотрены в ряде монографий, поэтому ограни­чимся лишь рассмотрением основных свойств взвешенных частиц[2].

Плотность частиц. Различают истинную, насыпную и кажу­щуюся плотности. Насыпная плотность (в отличие от истинной) учитывает воздушную прослойку между частицами пыли. При слеживании насыпная плотность возрастает в 1,2 - 1,5 раза. Кажущаяся плотность представляет собой отношение массы частицы к занимаемому ею объему, включая поры, пустоты и не­ровности. Гладкие монолитные, как и первичные частицы имеют кажущуюся плотность, практически совпадающую с истинной. Снижение кажущейся плотности по отношению к истинной на­блюдается у пылей, склонных к коагуляции или спеканию первич­ных частиц, например у сажи, оксидов цветных металлов и др.

Дисперсность частиц.Размер частиц, пожалуй, является ос­новным ее параметром, так как выбор пылеуловителя того или иного типа определяется, главным образом, дисперсным составом улавливаемой пыли.

В процессе коагуляции первичные частицы пыли объединяются в агломераты, т. е. укрупняются. Поэтому в технике газоочистки большое значение имеет так называемый стоксовский размер, представляющий собой диаметр сферической частицы, имеющей такую же скорость осаждения (седиментации), как и данная несферическая частица или агрегат.

Дисперсный состав пыли можно представить в виде содержа­ния по числу или по массе частиц различных фракций. Фракцией называют относительную долю частиц, размеры которых нахо­дятся в определенном интервале значений, принятых в качестве нижнего и верхнего пределов.

Наиболее удобным является графическое изображение дис­персного состава пыли в виде интегральных кривых. Большинство промышленных пылей подчиняется нормально-логарифмическому закону распределения частиц по размерам. Важным свойством нормально-логарифмического распределе­ния частиц по размерам является тот факт, что, если подобный вид распределения получен относительно числа частиц, то он со­храняется и относительно их распределения по массе.

Помимо стоксовского диаметра частиц в технике пылеулавли­вания используется так называемый аэродинамический диаметр частицы , характеризующий диаметр сферы, скорость осажде­ния (седиментации) которой соответствует скорости осаждения частицы плотностью 1000 кг/м3.Иногда размер частиц характеризуют скоростью витания υc(в м/с), которая представляет собой скорость свободного па­дения частиц в неподвижном воздухе. Номограмма для опреде­ления стоксовского диаметра частиц по скорости их витания при­ведена на рис. 1.2.

Рисунок 1.2 - Номограмма для определения скорости витания в воздухе частиц пыли размером 2-100 мкм.

Адгезионные свойства частиц.Адгезионные свойства частиц определяют их склонность к слипаемости. Повышенная слипаемость частиц пыли может привести к частичному или полному за­биванию пылеулавливающих аппаратов улавливаемым продук­том. Поэтому для многих пылеулавливающих аппаратов установ­лены определенные границы применимости в зависимости от слипаемости улавливаемой пыли.

Чем меньше размер частицы пыли, тем легче они прилипают к поверхности аппарата. Пыли, у которых 60-70% частиц имеют диаметр меньше -10 мкм, ведут себя как слипающиеся, хотя те же пыли с размером частиц более 10 мкм обладают хорошей сыпу­честью. Ниже приведено ориентировочное разделение пылей по степени слипаемости на четыре группы:

Характеристика пыли Наименование пыли
Неслипающиеся Сухая шлаковая пыль; кварцевая пыль(сухой песок); сухая глина
Слабослипающиеся Летучая зола, содержащая много несгоревших продуктов; коксовая пыль; магнезито­вая сухая пыль; сланцевая зола; апатито­вая сухая пыль; доменная пыль; колошни­ковая пыль
Среднеслипающиеся Летучая зола без недожога; торфяная зо­ла; торфяная пыль; влажная магнезитовая пыль; металлическая пыль; колчеданы, ок­сиды свинца, цинка и олова; сухой цемент; сажа; сухое молоко; мучная пыль; опилки
Сильнослипающиеся Цементная пыль, выделенная из влажного воздуха; гипсовая и алебастровая пыль; нитрофоска; двойной суперфосфат; клин­керная пыль; содержащая соли натрия; волокнистые пыли (асбест, хлопок, шерсть); все пыли с размерами частиц менее 10мкм

Со слипаемостью тесно связана другая характеристика пы­ли - ее сыпучесть. Сыпучесть пыли оценивается по углу есте­ственного откоса, который принимает пыль в свеженасыпанном состоянии. Эта величина определяет характер движения пыли в бункерах и течках пылеулавливающих установок.

Абразивность частиц.Абразивность пыли характеризует интен­сивность износа металла при одинаковых скоростях газов и кон­центрациях пыли. Она зависит от твердости, формы, размера и плотности частиц. Абразивность улавливаемой пыли учитывается при выборе скорости запыленных газов, толщины стенок аппара­тов и газоходов, а также при выборе для них облицовочных материалов.

Смачиваемость частицводой оказывает определенное влияние на эффективность мокрых пылеуловителей, особенно при работе с рециркуляцией. Гладкие частицы смачиваются лучше, чем час­тицы с неровной поверхностью. Это объясняется тем, что послед­ние в большей степени оказываются покрытыми абсорбированной газовой оболочкой, затрудняющей смачивание.

По характеру смачивания все твердые тела разделяют на три основные группы:

1) гидрофильные материалы, которые хорошо смачиваются водой (кальций, кварц, большинство силикатов и окисленных ми­нералов, галогениды щелочных металлов);

2) гидрофобные материалы, которые плохо смачиваются водой (графит, уголь, сера);

3)абсолютно гидрофобные тела (парафин, тефлон, битумы).

Гигроскопичность и растворимость частиц.Эти свойства частиц определяются прежде всего их химическим составом, а также размером, формой и степенью шероховатости поверхности частиц. Гигроскопичность и растворимость частиц способствуют их улав­ливанию в аппаратах мокрого типа.

Удельное электрическое сопротивление слоя пыли.Величина удельного электрического сопротивления (УЭС) слоя частиц пы­ли зависит от свойств отдельных частиц (от поверхностной и внут­ренней электропроводности, формы и размеров частиц), а также от структуры слоя и параметров газового потока. Она оказывает существенное влияние на работу электрофильтров. Зависимость удельного электрического сопротивления от температуры и влаж­ности газов используется при кондиционировании запыленных га­зов перед электрофильтрами.

В зависимости от удельного электрического сопротивления пы­ли делятся на три группы.

Первая группа - низкоомные пыли с удельным электри­ческим сопротивлением слоя ниже 104 Ом·см. При осаждении на электроде частицы пыли этой группы мгновенно разряжаются, что может привести ко вторичному уносу.

Вторая группа - пыли с удельным электрическим сопро­тивлением слоя от 104 до 1010 Ом·см. Эти пыли хорошо улавли­ваются в электрофильтре, так как при осаждении на электроде разрядка частиц происходит не сразу, а в течение определенного времени, необходимого для накопления слоя.

Третья группа - пыли с удельным электрическим сопротивлением слоя выше 1010-1013 Ом·см. Улавливание пылей этой группы в процессе электрической очистки газов представляет большие трудности. Частицы подобной пыли образуют при осаж­дении на электроде пористый изолирующий слой. При повышении некоторого критического значения напряженности электрического поля происходит электрический пробой пористого слоя с образо­ванием тонкого канала, заполненного положительными ионами. Этот канал выполняет роль острия, на котором возникает мощ­ный обратный коронный разряд, действующий навстречу основно­му, что приводит к резкому снижению эффективности электро­фильтра.

Электрическая заряженность частиц.Знак заряда частиц зави­сит от способа их образования, химического состава, а также свойств веществ, с которыми они соприкасаются. Электрическая заряженность частиц оказывает влияние на их поведение в га­зоходах и эффективность улавливания в газоочистных аппаратах (мокрых пылеуловителях, фильтрах и др.). Кроме того, электри­ческая заряженность частиц влияет на взрывоопасность и адгезионные свойства частиц. Так, например [4], в бункерах электро­фильтров свежеуловленная пыль, сохраняя заряд, имеет угол естественного откоса, близкий к нулю, т. е. ведет себя почти как жидкость. Через несколько часов, с потерей частицами электриче­ского заряда угол естественного откоса возрастает до 50°, а в от­дельных случаях - до 90°.

Способность частиц пыли к самовозгоранию и образованию взрывоопасных смесей с воздухом.Горючая пыль вследствие силь­но развитой поверхности контакта частиц с кислородом воздуха (порядка 1 м2/г) способна к самовозгоранию и образованию взрывчатых смесей с воздухом.

Интенсивность взрыва пыли зависит от ее химических и тер­мических свойств, от размеров и формы частиц, их концентрации в воздухе, от влагосодержания и состава газов, размеров и температуры источника воспламенения и от относительного содержа­ния инертной пыли.

При повышении температуры воспламенение иногда происхо­дит самопроизвольно, при этом интенсивность и продолжитель­ность горения могут быть различными. Плотные массы пылей го­рят более медленно, а рыхлые, особенно мелкая пыль, обычно быстро возгораются во всем объеме.

Способностью к воспламенению обладают некоторые пыли ор­ганических веществ, образующиеся при переработке зерна, краси­телей, пластмасс, волокон, а также пыли металлов, например Mg, А1 и Zn.

Минимальные взрывоопасные концентрации взвешенной ввоз­духе пыли - примерно 20-500 г/м3 воздуха, максимальные - около 700-800 г/м3. Чем больше содержание кислорода в газо­вой смеси, тем вероятнее взрыв и больше его сила; при содержа­нии кислорода менее 16% пылевое облако не взрывается.

1.4 Классификация промышленных
пылеуловителей и оценка их эффективности

В технике пылеулавливания применяется большое число ап­паратов, отличающихся друг от друга как по конструкции, так и по принципу осаждения взвешенных частиц. По способу улав­ливания пыли их обычно подразделяют на аппараты сухой, мокрой и электрической очистки газов.

В основе работы сухих пылеуловителей лежат гравитационные, инерционные и центробежные механизмы осаждения. Самостоя­тельную группу аппаратов сухой очистки составляют пылеулови­тели фильтрационного действия. В основе работы мокрых пылеуло­вителей лежит контакт запыленных газов с промывной жидкостью, при этом осаждение частиц происходит на капли, поверхность га­зовых пузырей или пленку жидкости. В электрофильтрах осажде­ние частиц пыли происходит за счет сообщения им электрическо­го заряда.

Рисунок1.3 - Схема классификации пылеулавливающих аппаратов.

В качестве основы для классификации пылеулавливающих ап­паратов воспользуемся несколько измененной схемой (рис. 1.3), предложенной Старком [5].

Приведенная на рис. 1.3классификация пылеуловителей не пре­тендует на абсолютность, так как существует значительное число аппаратов, работа которых, основана на совмещении различных принципов осаждения. Так, например, волокнистый фильтр при улавливании туманов может быть отнесен к категории мокрых пылеуловителей. То же самое можно сказать и о мокром электро­фильтре. Поэтому данную классификацию следует рассматривать как условную, позволяющую тем не менее достаточно наглядно охватить абсолютное большинство существующих пылеуловите­лей.

Эффективность очистки газов (степень очистки, ко­эффициент полезного действия) обычно выражается отношением количества уловленного материала к количеству материала, по­ступившего в газоочистной аппарат с газовым потоком за опреде­ленный период времени.

Эффективность очистки в пылеулавливающих аппаратах оп­ределяют в основном весовым методом, рассчитывая ее несколь­кими способами[2].

1.Эффективность очистки ηможет быть определена по содержанию пыли в газах до поступления в газоочистной аппарат и на
выходе из него:

где - массовый расход частиц пыли (капель, тумана), содержащихся в газах, соответственно поступающих и выходящих из газоочистного аппарата, кг/с; - объемный расход газов[*], соответственно поступающих и выходя­щих из газоочистного аппарата, м3/с; - концентрация частиц в газах, соответственно поступающих и выходящих из газоочистного аппарата, кг/м3.

Если объемный расход газов, проходящих через газоочистной аппарат, изменяется за счет подсоса воздуха, эффективность ап­парата определяют в соответствии с объемным расходом воздуха при подсосе, исходя из концентрации какого-либо газового ком­понента, не вступающего в аппарате в реакции (обычно SО2 или СО2):

где Кп- коэффициент подсоса, равный отношению концентраций анализируемого газового компонента в газах (объемн.%) после и до аппарата.

2.Эффективность очистки может быть определена по концентрации пыли в газах до поступления в аппарат и количеству улов-
ленной пыли:

где - количество уловленной пыли, кг/с.

3.Эффективность по количеству уловленной аппаратом пыли
и концентрации пыли в газах, выходящих из аппарата:

4.Коэффициент очистки газов часто определяют по фракционной эффективности - степени очистки газов от частиц определенного размера. Фракционная эффективность очистки ηфвыражается формулой

где Ф',Ф" - содержание данной фракции в газах, соответственно начальное (на входе в фильтр) и конечное (на выходе из фильтра), %.

Зная фракционную степень очистки газов, можно определить об­щую степень очистки по формуле

Для расчета по формуле (24) могут быть использованы кривые фракционных эффективностей (степеней очистки), полученные экспериментальным путем для некоторых типов пылеуловителей.

5. Эффективность улавливания пыли может быть выражена в виде коэффициента проскока частиц (степени непол­ноты улавливания), который представляет собой отношение кон­центрации частиц за пылеуловителем к их концентрации перед ним.

Коэффициент проскока ξ рассчитывается по формуле

ξ=1-η(1.20)

Суммарную степень очистки газов η, достигаемую в несколь­ких последовательно установленных аппаратах, рассчитывают по формуле

η=1-(1-η1) (1-η2)… (1-ηn) (1.21)

гдеη12,…ηn- степень очистки газов от пыли соответственно в первом, втором и n-м пылеуловителе.

Наши рекомендации