Конструктивные схемы ОПЗ и МПЗ

Одноэтажные каркасные здания. Каркас одноэтажного промышленного здания состоит из железобетонных или стальных колонн, образующих вместе с несущими конструкциями покрытия поперечные рамы, и разного рода продольных элементов — фундаментных, обвязочных и подкрановых балок, подстропильных ферм, а также различного рода связей, которые придают каркасу в целом и отдельным элементам пространственную жесткость и устойчивость. Расстояние между колоннами каркаса в продольном направлении (вдоль оси здания) называется шагом колонн,в поперечном — пролетом. Размеры пролетов и шага колонн принято называть сеткой колонн. Одноэтажные каркасные здания широко применяют в промышленном и сельскохозяйственном строительстве. Такие здания состоят из железобетонного (стального) каркаса, стен и покрытия. Каркас состоит из вертикальных элементов — колонн и горизонтальных — ригелей, балок и ферм. По балкам или фермам укладывают плиты покрытия, выполняют кровлю, а в необходимых случаях устраивают световые или аэрационные фонари.

Каркас воспринимает все внешние нагрузки от покрытия и массы конструкций каркаса, вертикальные и горизонтальные крановые нагрузки, а также горизонтальные нагрузки от ветра, воздействующего на стены.

В зданиях сельскохозяйственного назначения используют в основном каркасы из железобетонных конструкций.

В промышленных зданиях при пролетах 30 м и более каркас делают смешанным: колонны железобетонные, а фермы стальные.

Многоэтажные промышленные здания каркасного типа широко распространены в легкой, пищевой, химической, приборостроительной, электротехнической промышленности и аналогичных производствах.

Каркас зданий состоит из колонн и ригелей, образующих многоярусные рамы с жесткими узлами. Рамы располагают поперек здания, а в продольном направлении устойчивость здания обеспечивают стальными связями, которые устанавливают по каждому продольному ряду колонн в середине температурных отсеков. Число пролетов в каркасах бывает различным — от одного до грех тырех, а иногда и больше. Размеры пролетов 6, 9 и 12 м. Верхние этажи шириной 12 и 18 м перекрывают стропильными балками или фермами и плитами аналогично покрытиям одноэтажных зданий. Этажи могут иметь высоту 3,6—7,2 м с градацией размеров через 0,6 м. Стены выполняют из панелей или кирпичной кладки.

Многоэтажные гражданские здания сооружают трех типов: каркасно-панельными, бескаркасно-панельными и с несущими кирпичными стенами. Каркасно-панельные здания состоят из каркаса, плит перекрытий и покрытий, перегородок и панелей стен. Пролеты каркасов зданий приняты 5,6 и 6 м. Шаг колонн вдоль здания 3,2 и 3,6 м. Высота этажа в гражданских зданиях зависит от назначения зданий и принимают ее равной (м): 2,8 — для жилых домов и гостиниц; 3,3 — для административных зданий, учебных заведений, торговых предприятий; 3,6 и 4,2 — для зданий специального назначения (конструкторские бюро, лаборатории).

Выбор материала каркаса

Каркасы выполняют в основном из сборных железо­бетонных элементов. Монолитный железобетон приме­няют при наличии соответствующего технологического обоснования. В зданиях с большими пролетами и высо­той при грузоподъемности мостовых кранов 50 т и бо­лее, а также в особых условиях строительства и эксплу­атации допускаются стальные каркасы. В ряде случаев применяются смешанные каркасы.

При выборе материалов необходимо учитывать раз­меры пролетов и шага колонн, высоту здания, величину и характер действующих на каркас нагрузок, наличие агрессивных факторов, требования огнестойкости, дол­говечности и технико-экономические обоснования.

Каркас промышленного здания подвергается сложному комплексу силовых и несиловых воздействий. Сило­вые воздействия возникают от постоянных и временных нагрузок (собственная масса конструкций, снег, ветер, люди, эксплуатационное оборудование, грузоподъем­ные устройства и т. д.). В связи с этим элементы карка­са должны отвечать требованиям прочности и устойчи­вости.

Несиловые воздействия образуются от влияния внешней и внутренней среды в виде положительных и от­рицательных температур, пара, содержащихся в возду­хе химических веществ, действия минеральных масел, кислот и т. д. Все эти компоненты разрушают структуру строительных материалов, а следовательно, и конструк­ций. Поэтому элементы каркаса должны обладать тер­мостойкостью, влагостойкостью и биостойкостью.

При строительстве промышленного здания наиболь­ший расход материалов приходится на несущие элемен­ты здания, составляющие его каркас. Поэтому снижение расхода этих материалов обеспечивает эффективность строительства. Оно может быть достигнуто более полным использованием физико-механических свойств материа­лов, в основном, бетона и железобетона, так как именно эти материалы являются основными при изготовлении конструкций каркаса.

Типовым решением при конструировании сборного железобетонного каркаса одноэтажного промышленного здания является применение поперечных рам из сбор­ных железобетонных колонн и несущих элементов по­крытия (балок или ферм) и продольных элементов в ви­де фундаментных, подкрановых и обвязочных балок, плит покрытия и связей. Соединение несущих элементов покрытия с колоннами в этом случае принято шарнир­ным. Это позволяет осуществить независимую типизацию балок, ферм и колонн, так как при шарнирном сое­динении нагрузка, приложенная, к одному из элементов, не вызывает изгибающего момента в другом. Достига­ется высокая степень универсальности элементов карка­са, возможность их использования для различных ре­шений и типов несущих элементов покрытия. Кроме того, шарнирное соединение колонн, балок и ферм кон­структивно значительно проще жесткого, тем самым об­легчается изготовление и монтаж конструкций.

В каркасах большой протяженности устраивают тем­пературные швы, расчленяющие каркас на отдельные участки, называемые температурными блоками. Каж­дый температурный блок должен иметь длину не более 72 м,ширину не более 144м и обладать самостоятельной пространственной жесткостью.

Фундаменты промзданий

Основным видом фундаментов под сборные железобетонные колонны промышленных зда­ний являются железобетонные фундаменты стаканного типа По способу устройства они могут быть сборными, монолитными или сборно-монолитными При недостаточно прочных грунтах фундаменты могут быть свайными

Фундаменты устанавливают на песчаную или щебе­ночную подготовку толщиной не менее 100 мм, при влажных грунтах подготовку выполняют из бетона. Верхнюю плоскость фундамента располагают, как пра­вило, на 150мм ниже уровня чистого пола, т. е. на от­метке- 0,15, что позволяет выполнять все работы нуле­вого цикла до начала монтажа колонн.

В некоторых случаях при соответствующем технико-экономическом обосновании применяют монолитные сту­пенчатые фундаменты стаканного типа, изготовляемые на месте строительства.

Свайные фундаменты устраивают в случае залегания у поверхности земли слабых грунтов для передачи нагрузки на более глубокие пласты грунта с большей несущей способностью или при наличии смеж­ных, глубоко заложенных фундаментов под оборудова­ние.

Применение свайных фундаментов уменьшает объем земляных работ да 60...70%, сокращает сроки строитель­ства и уменьшает стоимость подземной части зданий до 50%.

Колонны промзданий.

Колонны промышленных зданий являются основными несущими элементами, воспринимающими нагрузку от покрытий форм, подкрановых балок, мостовых кранов, ветровых нагрузок, кроме того колонны обеспечивают пространственную жесткость здания.

По назначению колонны бывают крайние и средние.

По конструкции колонны бывают для зданий, не имеющих мостовых кранов, и для зданий, оборудованных мостовыми кранами. Колонны для зданий, оборудованных кранами, состоят из двух частей: надкрановой и подкрановой.

Колонны изготовляют из железобетона и стали.

Железобетонные колонны — из предварительно напряженного железобетона. Применяют бетон марок 200, 300, 400 (кг/см3). Размеры железобетонных колонн зависят от ширины и высоты пролета, шага колонн и грузоподъемности мостовых кранов.

Металлические колонны изготовляют из стали. Колонны состоят из стержня и нижней части – башмака. Башмак служит для передачи нагрузки от колонны на фундамент и крепится к нему анкерными болтами. В поперечном сечении колонна представляет собой комбинацию прокатных профилей, связанных между собой накладками.

По конструкции колонны бывают:

· постоянного сечения;

· ступенчатые;

· раздельные.

Если колонна имеет постоянное по высоте сечение, то нагрузка на колонну передается через консоль, на которую опирается подкрановая балка. В ступенчатых колоннах переменного по высоте сечения нагрузка от подкрановой балки передается непосредственно на стержень колонны.

Колонна раздельного типа состоит из двух рядом поставленных стержней, соединенных между собой, но раздельно воспринимающих нагрузку от шатра и крана.

Подкрановые балки.

В номенклатуру типовых сборных конструкций вклю­чены сборные железобетонные подкрановые балки про­летом 6 и 12 м под краны грузоподъемностью 10... 30 т. Железобетонные подкрановые балки массивнее сталь­ных, они лучше противостоят динамическим воздействи­ям и погашают массой балки возможные удары. К недостаткам железобетонных подкрановых ба­лок относятся, главным образом, трудности последующе­го повышения грузоподъемности кранов, что нередко бывает необходимо при реконструкции промышленных зданий. Кроме того, крепление крановых рельсов к же­лезобетонным балкам требует большого расхода метал­ла.

При пролете 6 м балки имеют тавровое сечение, а при пролете 12 м - двутавровое. Устройство полок в верхней части балок обусловлено необходимостью вос­принимать и передавать на колонны горизонтальные на­грузки от поперечного торможения крана.

Высота подкрановых балок пролетом 6 м принима­ется 800 и 1000 мм, пролетом 12м - 1200 мм.

В настоящее время подкрановые балки выполняют предварительно напряженными на протяжных стендах длиной до 100 м и более.

Подкрановые балки крепят сваркой закладных опор­ных щитов к консолям колонн, а к надколеннику - вер­тикально поставленными стальными накладками, прива­ренными к закладным деталям колонн и подкрановых балок.

Крановый путь крепят к подкрановым балкам, ис­пользуя болты, изогнутые петли и специальные крюки. .Для пропуска болтов в полках балок через 750мм предусмотрены отверстия, образуемые газовыми трубка­ми, которые ставят при бетонировании. Рельс в виде сварной плети на длину температурного отсека уклады­вается на упругой прокладке из прорезиненной ткани.

При расчете подкрановых балок их рассматривают как свободно лежащие на двух опорах. Постоянной рав­номерно распределенной нагрузкой является собствен­ная масса балки и кранового пути. Временная нагрузка состоит из вертикального давления колес кранов и гори­зонтальной силы, возникающей при торможении движу­щихся по мосту крана тележек.

Обвязочные балки

Обвязочные балки служат для опирания кирпичных и мел­коблочных стен в местах перепада высот смежных пролетов, а также для повышения прочности и устойчивости высоких са­монесущих стен. В последнем случае расстояние между балками по высоте определяют расчетом в зависимости от высоты, тол­щины и материала стен, наличия в стене проемов и их размеров.

Стены второго и следующего ярусов — навесные, нагрузки от них передаются на колонны, тогда как первый ярус стены, опирающийся на фундаментную балку, является самонесущим.

Обвязочные балки обычно располагают над оконными про­емами, и они выполняют функции перемычек. Такие балки имеют прямоугольное сечение высотой 600 мм, ширину 200, 250 и 380 мм и длину 6 м. Балки укладывают на стальные опор­ные столики-консоли со скрытым ребром жесткости и крепят к колоннам стальными планками.

. Балки по форме поперечного сечения подразделяются на два типа:

- прямоугольного сечения;

- с консольным выступом.

1.2. Балки типа БОП в зависимости от толщины опирающихся на них стен подразделяются на:

шириной 250 мм - для стен толщиной 200-250 мм,

шириной 380 мм - для стен толщиной 380-400 мм.

Наши рекомендации