Оптимальная величина страхования.

Рассмотрим некоторые приложения теории полезности.

Задача. Оптимальная величина страхования. Ювелир вла­деет бриллиантом стоимостью 100 000 дол. и желает застраховать его от кражи. Страховка покупается по правилу: цена страховки составляет 20 % от суммы, которую страхуют. Например, если бриллиант страхуется на всю стоимость (100 000 дол.), страховка стоит 20 000 дол., если страхуется на половину цены (50 000 дол.). то страховка обходится в 10 000 дол. Если ювелир будет знать (построит) свою функцию полезности, он сможет рассчитать, на какую оптимальную сумму следует застраховать дорогую вещь.

Ювелир может оказаться в одной из двух ситуации: 1) бриллиант украден; 2) бриллиант не украден. Чем больше сумма страхования, тем больше его состояние (капитал), если бриллиант украден, но тем меньше его состояние, если брил­лиант не украден.

Например, если бриллиант застрахован на 50 000 дол., име­ют место два случая:

1. Бриллиант украден. При этом потери ювелира рассчитыва­ются следующим образом:

-100 000 (бриллиант) - 10 000 (страховка) + 50 000 (компен­сация) = -60 000 дол., а капитал 50 000-10 000 = 40 000 дол.

2. Бриллиант не украден. В этом случае капитал ювелира составит:

100 000 (бриллиант) - 10 000 (страховка) = 90 000 дол.

Если бриллиант застрахован на 100 000 дол., то в случае кражи бриллианта капитал составит 100 000 - 20 000 = 80 000 дол. Если бриллиант не украден, капитал также составит 80 000 дол. Обозначим капитал ювелира в случае, если бриллиант не украден, через Yn:

Yn = 100 000 - 0,2К, (4.5)

где К - сумма страхования.

Если бриллиант украден, то капитал ювелира определим как Yt:

Yt = 0,8 K .

Соответствующий график, отражающий бюджетное ограни­чение, представлен на рис. 4.5.

Оптимальная величина страхования. - student2.ru

Рис. 4.5. Графическое решение задачи 4.2

Предположим, что можно экспертно определить вероятность р того, что бриллиант будет украден. Тогда полезность капитала Yt, равна U(Yt). Вероятность того, что бриллиант не украден, со­ставляет (1-р), и U(Yn) - полезность капитала Yn в этом случае.

Ожидаемая полезность U «игры» (с вероятностью р брилли­ант украден и с вероятностью (1 - р) - не украден) определяется согласно формуле (4.1) выражением

U = pU(Yt)+(1-p)U(Yn).

Значения Yt и Yn следует выбирать таким образом, чтобы ожидаемая полезность была максимальной, т.е. pU(Yt) + (1-р)(Yn) Оптимальная величина страхования. - student2.ru max .

Пусть точка касания кривой безразличия (линия одинаковой полезности) на рис. 4.5 соответствует Yn = 86 000 дол., Yt = 56 000 дол.

Тогда согласно формуле (4.5) имеем: 86 000 = 100 000 - 0,2К, откуда оптимальная величина страхования К = 70 000 дол.

Спрос на страхование.

Задача. Спрос на страхование. Пусть финансовое состо­яние индивида оценивается заданным значением W. Предполага­ется, что можно вычислить вероятность р потери некоторой ча­сти этого состояния, определяемой суммой L £ W (например, в результате пожара). Индивид может купить страховой полис, в соответствии с которым ему возместят нанесенный ущерб в размере q. Плата за страхование составляет pq, где p - доля страхования в объеме нанесенного ущерба. Проблема состоит в определении значения q.

Исследуем задачу максимизации ожидаемой полезности фи­нансового состояния индивида в ситуации, когда с вероятностью р страховой случай происходит и с вероятностью (1 –р) - не происходит. Тогда задача сводится к поиску максимума по q ожидаемой полезности капитала индивида:

Оптимальная величина страхования. - student2.ru

Применим необходимое условие оптимальности - продиффе­ренцируем выражение в квадратных скобках по q и приравняем производную нулю:

Оптимальная величина страхования. - student2.ru

где q* - оптимальное значение q. В результате получаем:

Оптимальная величина страхования. - student2.ru

Предполагая известным вид функции U, из соотношения (4.6) находим значение q*.

Рассчитаем ожидаемую прибыль страховой компании, учи­тывая, что страховой случай имеет вероятностный характер.

Если страховой случай произошел, компания получает доход pq – q. Если страховой случай не наступил, компания получает доход pq. Поэтому ожидаемая прибыль компании

р(pq - q)+ (1 - р) pq = ppq - pq + pq - ppq = q(p - р),

где р - вероятность наступления страхового случая.

Конкуренция между страховыми компаниями уменьшает прибыль, которая в условиях совершенной конкуренции стремит­ся к нулю, т.е. из условия q(p - р) = 0 следует, что p Оптимальная величина страхования. - student2.ru р.

Это означает, что доля платежа от страхуемой суммы p при­ближается к вероятности несчастного случая р. Если соотноше­ние p = р ввести в условие максимума ожидаемой полезности, то получим:

Оптимальная величина страхования. - student2.ru .

Если потребитель не склонен к риску, то Оптимальная величина страхования. - student2.ru , и из равенства первых производных следует равенство аргументов, т.е.

W – L + (1 - p)q* =W – pq*,

или

– L + q* – pq* = –pq*,

откуда

q* = L.

Вывод. Страховаться целесообразно на сумму, которую мож­но потерять в результате несчастного случая.


Наши рекомендации