Каталитический метод очистки газов

Этим методом превращают токсичные компоненты выбросов в вещества безвредные или менее вредные для окружающей среды путем введения в систему дополнительных веществ, называемых катализаторами. Каталитические методы основаны на взаимодействии удаляемых веществ с одним из компонентов, присутствующих в очищаемом газе, или со специально добавляемым в смесь веществом на твердых катализаторах. Действие катализаторов проявляется в промежуточном (поверхностном) химическом взаимодействии с реагирующими соединениями, в результате которого образуются промежуточные вещества и регенерированный катализатор.

В большинстве случаев катализаторами могут быть металлы или их соединения (платина и металлы платинового ряда, оксиды меди и марганца и т.д.).

Для осуществления каталитического процесса необходимы незначительные количества катализатора, расположенного таким образом, чтобы обеспечить максимальную поверхность контакта с газовым потоком. Катализаторы обычно выполняются в виде шаров, колец или проволоки, свитой в спираль. Катализатор может состоять из смеси неблагородных металлов с добавкой платины и палладия (сотые доли % к массе катализатора), нанесенных в виде активной пленки на нихромовую проволоку, свитую в спираль.

Существенное влияние на скорость и эффективность каталитического процесса оказывает температура газа. Для каждой реакции, протекающей в потоке газа, характерна минимальная температура начала реакции, ниже которой катализатор не проявляет активности.

Для поддержания необходимой температуры газа иногда к нему подмеши-

вают (особенно в пусковой период) продукты сгорания от вспомогательной горелки, работающей на высококалорийном топливе. На рис. 41. представлен каталитический реактор, предназначенный для окисления толуола, содержащегося в газовоздушных выбросах цехов окраски. Воздух, содержащий примеси толуола, подогревается в межтрубном пространстве теплообменника − рекуператора 1, откуда по переходным каналам он поступает в подогреватель 4. Продукты сгорания природного газа, сжигаемого в горелках 5, смешиваются с воздухом, повышая его температуру до 250−350 оС, т. е. до уровня, обеспечивающего оптимальную скорость окисления толуола на поверхности катализатора. Процесс химического превращения происходит на поверхности катализатора 3, размещенного в контактном устройстве 2. В качестве катализатора применена природная марганцевая руда (пиролизит) в виде гранул размером 2−5 мм, промотированных азотнокислым палладием. В результате окисления толуола образуются нетоксичные продукты: оксид углерода и водяные пары

(C7H8 +9O2 → 7CO2 + 4H2O). Смесь воздуха и продуктов реакции при температуре 350−450 оС направляется в рекуператор 1, где отдает тепло газовоздушному потоку, идущему на очистку, и, через выходной патрубок выводится в атмосферу.

Эффективность очистки такого реактора составляет 95−98 % при расходе вспомогательного топлива (природного газа) 3,5−4,0 м3 на 1000 м3 очищаемого газа.

В последние годы каталитический метод очистки нашел свое применение в процессах нейтрализации выхлопных газов автомобилей. Для комплексной очистки выхлопных газов − окисления продуктов неполного сгорания и восстановления оксида азота − применяют двухступенчатый каталитический нейтрализатор (рис. 42). Установка состоит из последовательно соединенных восстановительного 2 и окислительного 4 катализатора. Отработавшие газы через патрубок 1 поступают к восстановительному катализатору 2, на котором происходит нейтрализация оксидов азота по следующим реакциям:

NO + CO → 1/2N2 + CO2; NO + H2 → 1/2N2 + H2O. (34)

В качестве восстановительного катализатора применяют монельметалл

(медноникелевый сплав) или катализатор из благородных металлов (например, платина на глиноземе). Эффективность очистки по NO достигает 90 % и выше.

После восстановительного катализатора к отработавшим газам для создания окислительной среды через патрубок 3 подводится вторичный воздух. На окислительном катализаторе происходит нейтрализация продуктов неполного сгорания − оксида углерода и углеводородов:

СО + 1/2О2 → СО2; СхНу + (х+у/4)О2 → хСО2 + у/2Н2О. (35)

Рис. 41. Каталитический реактор:

1 – теплообменник-рекуператор; 2 – контактное устройство; 3 – катализатор;

4 – подогреватель; 5 – горелки

Рис. 42. Двухступенчатый каталитический нейтрализатор:

1 – входной патрубок; 2 – восстановительный катализатор; 3 – патрубок вторичного воздуха; 4 – окислительный катализатор

Для окислительных процессов применяют катализатор из благородных металлов или оксидов переходных металлов (медь, никель, хром и др.). Содержание оксида углерода в выхлопных газах автомобиля с нейтрализатором снижается почти в 10 раз, а углеводородов − примерно в 8 раз.

Наши рекомендации