Практическое применение оксиметрии
С основным объемом сведений из физиологии обмена кислорода и углекислого газа, необходимым для понимания оксиметрии, читатель ознакомился в предыдущих главах. В разделе о практическом применении метода рассмотрены лишь те фрагменты клинической физиологии, которые относятся исключительно к проблемам оксиметрии. Мы остановимся на практическом использовании именно быстрой оксиметрии, ибо медленный вариант метода — мониторинг не больного, а респиратора и, в силу своей простоты и очевидности, вряд ли нуждается в особых комментариях.
Быстродействующий оксиметр выводит на дисплей график изменения концентрации кислорода по времени, который называется оксиграммой. Адаптер-пробоотборник, общий для капнографа и оксиметра, устанавливается между интубационной трубкой и тройником контура респиратора или наркозного аппарата, поэтому в измерительную камеру поочередно поступают вдыхаемый и выдыхаемый газы. Блок быстрой оксиметрии обычно является компонентом мультигазовых мониторов, на дисплее которых оксиграмма демонстрируется синхронно с капнограммой. По своему внешнему виду оксиграмма напоминает зеркальное отражение капнограммы, и это неудивительно: доставка в легкие кислорода и удаление из них углекислого газа — процессы совмещенные, имеющие противоположное направление, но выполняемые одним и тем же дыхательным объемом.
В связи с тем, что эволюция человека до той ступени, на которой он пребывает сегодня, завершилась задолго до появления медицины критических состояний, его дыхательная система оказалась оптимально настроенной на работу в нормальной естественной среде — в атмосферном воздухе на уровне моря. В этих условиях объем воздуха, необходимый для доставки в легкие адекватного количества кислорода, совпадает с объемом, необходимым для эвакуации образующегося углекислого газа. Таким образом, единый объем альвеолярной вентиляции обеспечивает нормальное содержание в альвеолярном газе и артериальной крови как кислорода, так и углекислого газа. При дыхании газовыми смесями, обогащенными кислородом, без которых сегодня немыслимы ни анестезиология, ни интенсивная терапия, объем вентиляции, обеспечивающий поддержание нормокапнии, становится явно избыточным для доставки в альвеолы требуемого количества кислорода, в результате чего возникает гипероксия. И наоборот, при уменьшении атмосферного давления или при передозировке закиси азота альвеолярная гипоксия развивается несмотря на то, что вентиляция обеспечивает нормо- и даже гипокапнию.
Итак, быстрая оксиметрия служит простым дублером капнографии лишь в тех случаях, когда здоровый человек самостоятельно дышит атмосферным воздухом. Впрочем, таким пациентам обычно не нужен мониторинг.
Кислородный каскад
Если пронаблюдать за цепочкой процессов, из которых складывается доставка кислорода из атмосферы (150-160 мм рт. ст.) или контура респиратора в митохондрии (1-3 мм рт. ст.), нетрудно заметить, что парциальное давление кислорода последовательно снижается, поскольку каждый этап транспорта связан с определенными и довольно существенными издержками. Это явление получило название кислородного каскада. Быстродействующий оксиметр позволяет проследить за самыми начальными этапами каскада — от атмосферы до альвеол. Для анестезиолога и врача отделения интенсивной терапии они представляют особенный интерес, потому что опасные события, происходящие на входе в систему, способны вызывать тяжелые, иногда смертельные осложнения, но, будучи своевременно распознанными, поддаются быстрой и эффективной коррекции. Сегодня лидерство по скорости обнаружения таких расстройств по праву принадлежит быстродействующему оксиметру: его реакция на опасность опережает таковую у пульсоксиметра и капнографа на несколько минут — тех самых минут, когда осложнение еще только зарождается.
При дыхании атмосферным воздухом концентрация кислорода во вдыхаемом газе (FIO2) составляет 21 %, что при атмосферном давлении 760 мм рт. ст. соответствует парциальному давлению (PIO2) 160 мм рт. ст. (760 X 0,21)1.
1Понятия «парциальное давление», «относительная концентрация» и их обозначения подробно рассмотрены в гл. "Капнография". Там же приведены формулы для пересчета одною параметра к другой.
Напомним (см. гл. "Капнография"), что процессу анализа в оксиметре предшествует обезвоживание газовой смеси. Поэтому все величины относительных концентраций приведены к условиям сухого газа.
В дыхательных путях сухой атмосферный воздух насыщается парами воды до 100 % относительной влажности. Водяной пар разбавляет вдыхаемый газ, и концентрации всех его компонентов, включая кислород, снижаются. Величина парциального давления воды при температуре тела — 47 мм рт. ст., поэтому на долю остальных газов приходится (760 - 47) = 713 мм рт. ст. Таким образом, после увлажнения вдыхаемого газа в дыхательных путях или в увлажнителе респиратора парциальное давление кислорода составляет 21 % от 713 мм рт ст., то есть 150 мм рт. ст.2
2Здесь и далее мы опускаем десятые доли после запятой, поскольку они недоступны для клинического осмысления.
Попадая в альвеолы, вдыхаемый газ смешивается с альвеолярным газом, заполняющим функциональную остаточную емкость, и ликвидирует дефицит кислорода, возникающий в результате постоянного его перехода в кровь легочных капилляров. В связи с тем, что газовый состав альвеол обновляется достаточно часто (в соответствии с ритмом самостоятельного дыхания или искусственной вентиляции), состав альвеолярного газа в течение дыхательного цикла почти не изменяется.
Содержание кислорода в альвеолах зависит от баланса между минутным потреблением кислорода организмом и минутной доставкой кислорода в альвеолы из окружающей среды.
При дыхании атмосферным воздухом и нормальном минутном объеме вентиляции этот баланс устанавливается на уровне парциального давления РАО2 = 100 мм рт. ст., что соответствует концентрации кислорода в альвеолах FAO2 = 14%.
Парциальное давление кислорода в альвеолах влияет на процесс оксигенации крови в легочных капиллярах и, в конечном итоге, на сатурацию гемоглобина артериальной крови. При отсутствии препятствий для диффузии напряжение кислорода в крови, покидающей легочный капилляр, равно парциальному давлению кислорода в альвеолах. Напряжение кислорода в артериальной крови, которая представляет собой смесь потоков, поступающих в левое предсердие из разных легочных регионов, всегда на несколько мм рт. ст. меньше, чем парциальное давление кислорода в альвеолярном газе. Это обусловлено регионарной неравномерностью вентиляционно-перфузионных отношений в легких и наличием физиологического шунта, не превышающего у здоровых людей 2-3 % минутного объема кровообращения. При тяжелом поражении легких альвеолоартериальное различие по кислороду возрастает, нередко весьма существенно.
Так выглядит начальный этап кислородного каскада, где происходит снижение парциального давления кислорода со 160 мм рт. ст. (атмосфера) до 100 мм рт. ст. (альвеолы). Именно эти этапы каскада отражаются в цифровом и графическом виде на дисплее оксиметра. Разумеется, при использовании газовых смесей с увеличенным содержанием кислорода (а такие смеси в основном и применяются при ИВЛ) цифры оказываются иными, но суть остается прежней.
Фазы оксиграммы
Рис. 3.2.Фазы дыхательного цикла на оксиграмме
Нормальная оксиграмма представлена на рис. 3.2. Каждый дыхательный цикл на оксиграмме состоит из нескольких последовательных фаз.
А— конец вдоха. Дыхательные пути, включая интубационную трубку, на внешнем конце которой установлен адаптер-пробоотборник, заполнены вдыхаемым газом, иоксиметр показывает инспираторную концентрацию кислорода (FIO2).
АВ — начальная часть выдоха. Из дыхательных путей через адаптер монитора проходит газ, заполнявший проксимальную часть дыхательных путей — анатомическое мертвое пространство. Содержание кислорода в нем на несколько процентов меньше, чем в сухом газе контура, из-за "разбавления" парами воды. При вентиляции кондиционированным газом содержание кислорода во вдыхаемом газе практически идентично таковому в анатомическом мертвом пространстве. Сразу оговоримся, что небольшое падение концентрации кислорода в связи с увлажнением для клинической практики существенного значения не имеет и потому обычно не берется во внимание.
ВС — мимо датчика проходит газ транзиторной зоны — размытой области контакта альвеолярного и вдыхаемого газов.
CD — альвеолярная фаза В точке С оксиграмма делает резкий перегиб и переходит в альвеолярную фазу. Теперь оксиметр отображает на дисплее концентрацию кислорода в газе, покидающем альвеолы. Первые порции альвеолярного газа поступают в основном из так называемых "быстрых" регионов легких расположенных в верхних отделах. Объем их вентиляции избыточен по отношению к кровотоку, а значит, и концентрация кислорода в них выше, чем в других отделах. После этого в выдыхаемом потоке начинает доминировать газ из "средних", а затем из "медленных" регионов, где кровоток преобладает над вентиляцией и извлекает из альвеолярного газа возросшее количество кислорода. В результате кривая альвеолярной фазы имеет небольшой наклон вниз. Этот наклон увеличивается при патологии, усугубляющей неравномерность легочных вентиляционно-перфузионных отношений.
D — конец выдоха. Оксиметр регистрирует так называемую конечно-экспираторную концентрацию кислорода (FЕТО2).
DA — фаза вдоха. По дыхательным путям в легкие направляется свежая газовая смесь. Концентрация кислорода быстро поднимается до инспираторного уровня, на котором и остается до очередного выдоха. Эта фаза иногда включает инспираторную паузу, но ее начало и длительность по оксиграмме определить невозможно.
Таким образом, при быстрой оксиметрии непрерывно контролируются четыре показателя:
· содержание кислорода во вдыхаемом газе (концентрация либо парциальное давление);
- инспираторная концентрация обозначается FIO2и выражается десятичной дробью или в %,
- инспираторное парциальное давление обозначается PIO2и выражается в мм рт ст (для людей, мыслящих в системе СИ,— в килопаскалях),
· содержание кислорода в конечной порции выдыхаемого газа (концентрация либо парциальное давление);
- конечно-экспираторная концентрация обозначается FETO2,
- конечно-экспираторное парциальное давление обозначается РETO2,
· разница между этими двумя показателями (инспираторно-конечно-экспираторное различие1);
- обозначается FI-ETO2или PI-ETO2;
· оксиграмма, которая дает наиболее выразительную информацию при медленном движении по экрану или будучи представленной в виде тренда. Клиническая интерпретация формы отдельных дыхательных циклов оксиграммы на сегодняшний день не разработана.
1Данный показатель обладает большим диагностическим значением потому прежде чем продолжить чтение имеет смысл потренироваться в произношении его названия. По видимому, это тот случай когда можно примириться с корявым по простым как грабли переводом термина – вдыхаемо-выдыхаемая разница — встретившемся в том единственном литературном источнике по оксиметрии на русском языке, который нам удалось обнаружить — в рабочих инструкциях фирмы DАТЕХ для российских дилеров.
В принципе, оксиграмму можно без труда использовать для расчета частоты дыхания, но, поскольку быстродействующий оксиметр всегда является компонентом мультигазового монитора, этот показатель традиционно определяется по капнограмме. Тем не менее затянувшаяся пауза между дыхательными циклами на оксиграмме также распознается программным обеспечением монитора как апноэ и приводит к активации аларм-системы.
Все фазы оксиграммы, как и капнограммы, ясно различимы только тогда, когда дыхательный объем превышает величину анатомического мертвого пространства. Признаком полноценного выдоха служит отчетливая альвеолярная фаза на капнограмме или оксиграмме, поэтому перед чтением параметров оксиметрии необходимо оценить форму кривой.
При отсутствии альвеолярной фазы единственный достоверный показатель оксиметрии — FiO2.